Terminez le cours intermédiaire Créer une infrastructure avec Terraform sur Google Cloud pour recevoir un badge démontrant vos compétences dans les domaines suivants : les principes d'Infrastructure as Code (IaC) avec Terraform, le provisionnement et la gestion des ressources Google Cloud avec des configurations Terraform, la gestion efficace des états (local et distant) et la modularisation du code Terraform à des fins de réutilisabilité et d'organisation.
Obtenez un badge de compétence avancé en suivant le cours Utiliser des API de machine learning sur Google Cloud, qui présente les fonctionnalités de base des technologies de machine learning et d'IA suivantes : l'API Cloud Vision, l'API Cloud Translation et l'API Cloud Natural Language. Un badge de compétence est un badge numérique exclusif délivré par Google Cloud. Il atteste de votre expertise des produits et services Google Cloud, et de votre capacité à mettre en pratique vos connaissances dans un environnement concret et interactif. Terminez ce cours et passez l'évaluation finale de l'atelier challenge pour recevoir un badge de compétence que vous pourrez partager avec votre réseau.
C# has powered Windows .NET application development for nearly two decades and Google Cloud is committed to supporting developers getting their .NET workloads up and running on Google Cloud. In this quest, you will learn how to run C# apps in Google Cloud, and specifically how to take your apps to the next level by interfacing them with the big data and machine learning APIs that are accessible now from C#. By enrolling in this quest you will see firsthand how seamlessly Google Cloud integrates with .NET workloads and what the possibilities are for leveraging big data and ML services in your own C# projects.
Terminez le cours intermédiaire Créer des modèles de ML avec BigQuery ML pour recevoir un badge démontrant vos compétences dans les domaines suivants : la création et l'évaluation de modèles de machine learning avec BigQuery ML pour générer des prédictions de données. Un badge de compétence est un badge numérique exclusif délivré par Google Cloud. Il atteste de votre expertise des produits et services Google Cloud et de votre capacité à mettre en pratique vos connaissances dans un environnement concret et interactif. Terminez ce cours et passez l'évaluation finale de l'atelier challenge pour recevoir un badge de compétence que vous pourrez partager avec votre réseau.
Terminez le cours intermédiaire Développer des applications sans serveur sur Cloud Run pour recevoir un badge démontrant vos compétences dans les domaines suivants : l'intégration de Cloud Run à Cloud Storage pour la gestion des données, la conception de systèmes asynchrones résilients à l'aide de Cloud Run et Pub/Sub, la construction de passerelles API REST reposant sur Cloud Run, et la création et le déploiement de services sur Cloud Run.
Terminez le cours intermédiaire Créer un entrepôt de données avec BigQuery pour recevoir un badge démontrant vos compétences dans les domaines suivants : la jointure de données pour créer des tables, la résolution des problèmes liés aux jointures, l'ajout de données avec des unions, la création de tables partitionnées par date, et l'utilisation d'objets JSON, ARRAY et STRUCT dans BigQuery.
Créer des modèles de machine learning en quelques minutes au lieu de plusieurs heures grâce à SQL, ça vous intéresse ? BigQuery ML démocratise le machine learning en permettant aux analystes de données de créer, d'entraîner et d'évaluer des modèles de ML, puis de les utiliser pour faire des prédictions, en s'appuyant sur leurs outils SQL et leurs connaissances actuelles dans ce langage. Dans cette série d'ateliers, vous allez essayer différents types de modèles et apprendre ce qui caractérise un bon modèle.
Il n'a échappé à personne que le machine learning est une technologie très dynamique, et Google Cloud Platform a joué un rôle déterminant dans son développement. Doté d'une multitude d'API.
In this series of labs you will learn how to use BigQuery to analyze NCAA basketball data with SQL. Build a Machine Learning Model to predict the outcomes of NCAA March Madness basketball tournament games.
Aujourd'hui, le big data, le machine learning et l'intelligence artificielle sont des thèmes en vogue dans le domaine de l'informatique. Ce sont toutefois des disciplines pointues, pour lesquelles il n'est pas toujours simple de trouver des documents de référence. Heureusement, Google Cloud propose des services conviviaux dédiés, ainsi que ce cours d'introduction, pour vous aider à faire vos premiers pas avec des outils comme BigQuery, l'API Cloud Speech et Video Intelligence.
Terminez le cours d'introduction Préparer les données à utiliser pour les tableaux de bord et rapports Looker pour recevoir un badge démontrant vos compétences dans les domaines suivants : le filtrage, le tri et le croisement de données ; la fusion des résultats de différentes explorations Looker ; et l'utilisation de fonctions et d'opérateurs pour créer des tableaux de bord et des rapports Looker en vue de l'analyse et de la visualisation des données.
Want to scale your data analysis efforts without managing database hardware? Learn the best practices for querying and getting insights from your data warehouse with this interactive series of BigQuery labs. BigQuery is Google's fully managed, NoOps, low cost analytics database. With BigQuery you can query terabytes and terabytes of data without having any infrastructure to manage or needing a database administrator. BigQuery uses SQL and can take advantage of the pay-as-you-go model. BigQuery allows you to focus on analyzing data to find meaningful insights.
This quest offers hands-on practice with Cloud Data Fusion, a cloud-native, code-free, data integration platform. ETL Developers, Data Engineers and Analysts can greatly benefit from the pre-built transformations and connectors to build and deploy their pipelines without worrying about writing code. This Quest starts with a quickstart lab that familiarises learners with the Cloud Data Fusion UI. Learners then get to try running batch and realtime pipelines as well as using the built-in Wrangler plugin to perform some interesting transformations on data.
Terminez le cours d'introduction Dégager des insights des données BigQuery pour recevoir un badge démontrant vos compétences dans les domaines suivants : l'écriture de requêtes SQL, l'interrogation de tables publiques, le chargement d'exemples de données dans BigQuery, la résolution d'erreurs de syntaxe courantes avec l'outil de validation des requêtes de BigQuery et la création de rapports dans Looker Studio en se connectant aux données BigQuery.
Terminez le cours d'introduction Surveiller et journaliser avec Google Cloud Observability pour recevoir un badge démontrant vos compétences dans les domaines suivants : la surveillance des machines virtuelles dans Compute Engine, l'utilisation de Cloud Monitoring pour la supervision multiprojet, l'extension des fonctionnalités de surveillance et de journalisation à Cloud Functions, la création et l'envoi de métriques d'application personnalisées, et la configuration d'alertes Cloud Monitoring en fonction de ces métriques personnalisées.
Data Catalog is deprecated and will be discontinued on January 30, 2026. You can still complete this course if you want to. For steps to transition your Data Catalog users, workloads, and content to Dataplex Catalog, see Transition from Data Catalog to Dataplex Catalog (https://cloud.google.com/dataplex/docs/transition-to-dataplex-catalog). Data Catalog is a fully managed and scalable metadata management service that empowers organizations to quickly discover, understand, and manage all of their data. In this quest you will start small by learning how to search and tag data assets and metadata with Data Catalog. After learning how to build your own tag templates that map to BigQuery table data, you will learn how to build MySQL, PostgreSQL, and SQLServer to Data Catalog Connectors.
Il s'agit de la deuxième quête des ateliers dérivés des exercices du livre Data Science on Google Cloud Platform de Valliappa Lakshmanan, publié par O'Reilly Media, Inc. Dans cette seconde quête, qui couvre du chapitre neuf à la fin du livre, vous développez les compétences acquises lors de la première quête et exécutez des tâches de machine learning de A à Z avec des outils de pointe et des ensembles de données réels, le tout à l'aide des outils et services de Google Cloud Platform.
In this advanced-level quest, you will learn how to harness serious Google Cloud computing power to run big data and machine learning jobs. The hands-on labs will give you use cases, and you will be tasked with implementing big data and machine learning practices utilized by Google’s very own Solutions Architecture team. From running Big Query analytics on tens of thousands of basketball games, to training TensorFlow image classifiers, you will quickly see why Google Cloud is the go-to platform for running big data and machine learning jobs.
TensorFlow is an open source software library for high performance numerical computation that's great for writing models that can train and run on platforms ranging from your laptop to a fleet of servers in the Cloud to an edge device. This quest takes you beyond the basics of using predefined models and teaches you how to build, train and deploy your own on Google Cloud.
Terminez le cours d'introduction Préparer des données pour les API de ML sur Google Cloud pour recevoir un badge démontrant vos compétences dans les domaines suivants : le nettoyage des données avec Dataprep by Trifacta, l'exécution de pipelines de données dans Dataflow, la création de clusters et l'exécution de jobs Apache Spark dans Dataproc, et l'appel d'API de ML comme l'API Cloud Natural Language, l'API Google Cloud Speech-to-Text et l'API Video Intelligence.
Il n'a échappé à personne que le machine learning est une technologie très dynamique, et Google Cloud Platform a joué un rôle déterminant dans son développement. Doté d'une multitude d'API, GCP propose un outil pour pratiquement toutes les tâches de machine learning. Avec ce cours d'introduction, vous allez vous familiariser avec le machine learning et son application au traitement du langage. Au cours de divers ateliers, vous allez extraire des entités à partir de texte, effectuer une analyse des sentiments et de la syntaxe, ainsi que transcrire du contenu audio avec l'API Speech-to-Text.
With Google Assistant part of over a billion consumer devices, this quest teaches you how to build practical Google Assistant applications integrated with Google Cloud services via APIs. Example apps will use the Dialogflow conversational suite and the Actions and Cloud Functions frameworks. You will build 5 different applications that explore useful and fun tools you can extend on your own. No hardware required! These labs use the cloud-based Google Assistant simulator environment for developing and testing, but if you do have your own device, such as a Google Home or a Google Hub, additional instructions are provided on how to deploy your apps to your own hardware.
Vous voulez créer un entrepôt de données ou l'optimiser ? Découvrez les bonnes pratiques d'extraction, de transformation et de chargement des données dans Google Cloud avec BigQuery. Dans cette série d'ateliers interactifs, vous allez créer votre propre entrepôt de données et l'optimiser en utilisant différents ensembles de données publics à grande échelle de BigQuery. BigQuery est la base de données d'analyse à faible coût de Google, entièrement gérée et qui ne nécessite aucune opération (NoOps). Avec BigQuery, vous pouvez interroger des téraoctets de données sans avoir à gérer d'infrastructure ni faire appel à un administrateur de base de données. Basé sur le langage SQL et le modèle de paiement à l'usage, BigQuery vous permet de vous concentrer sur l'analyse des données pour en dégager des informations pertinentes.
L'utilisation de la puissance de calcul à grande échelle pour détecter des modèles et lire des images est l'une des technologies fondamentales de l'IA, des voitures sans conducteur à la reconnaissance faciale. Google Cloud Platform offre une vitesse et une précision de pointe grâce à des systèmes qui peuvent être utilisés simplement en appelant des API. Doté en plus d'une multitude d'API, GCP propose un outil pour pratiquement toutes les tâches de machine learning. Dans ce cours d'introduction, vous allez vous familiariser avec le machine learning et son application au traitement de l'image. Au cours de divers ateliers, vous allez étiqueter des images, détecter des visages et des points de repère, mais aussi extraire, analyser et traduire du texte à partir d'images.
Get started with Go (Golang) by reviewing Go code, and then creating and deploying simple Go apps on Google Cloud. Go is an open source programming language that makes it easy to build fast, reliable, and efficient software at scale. Go runs native on Google Cloud, and is fully supported on Google Kubernetes Engine, Compute Engine, App Engine, Cloud Run, and Cloud Functions. Go is a compiled language and is faster and more efficient than interpreted languages. As a result, Go requires no installed runtime like Node, Python, or JDK to execute.
Twelve years ago Lily started the Pet Theory chain of veterinary clinics, and has been expanding rapidly. Now, Pet Theory is experiencing some growing pains: their appointment scheduling system is not able to handle the increased load, customers aren't receiving lab results reliably through email and text, and veteranerians are spending more time with insurance companies than with their patients. Lily wants to build a cloud-based system that scales better than the legacy solution and doesn't require lots of ongoing maintenance. The team has decided to go with serverless technology. For the labs in the Google Cloud Run Serverless Quest, you will read through a fictitious business scenario in each lab and assist the characters in implementing a serverless solution. Looking for a hands on challenge lab to demonstrate your skills and validate your knowledge? On completing this quest, enroll in and finish the additional challenge lab at the end of this quest to receive an exclusive Google…
Obtenez un badge de compétence débutant en suivant le cours Créer un site Web sur Google Cloud. Ce cours s'appuie sur la série Get Cooking in Cloud et aborde les thèmes suivants :Déployer un site Web sur Cloud RunHéberger une application Web sur Compute EngineCréer, déployer et faire évoluer votre site Web sur Google Kubernetes EngineMigrer d'une application monolithique vers une architecture de microservices à l'aide de Cloud Build
Suivez le cours Configurer un environnement de développement d'applications sur Google Cloud et obtenez un badge de compétence. Dans ce cours, vous apprendrez à créer et connecter une infrastructure cloud axée sur le stockage à l'aide des fonctionnalités de base des technologies suivantes Cloud Storage, Identity and Access Management, Cloud Functions et Pub/Sub.
In this advanced-level quest, you will learn the ins and outs of developing GCP applications in Python. The first labs will walk you through the basics of environment setup and application data storage with Cloud Datastore. Once you have a handle on the fundamentals, you will get hands-on practice deploying Python applications on Kubernetes and App Engine (the latter is the same framework that powers Snapchat!) With specialized bonus labs that teach user authentication and backend service development, this quest will give you practical experience so you can start developing robust Python applications straight away.
In this advanced-level quest, you will learn the ins and outs of developing GCP applications in Java. The first labs will walk you through the basics of environment setup and application data storage with Cloud Datastore. Once you have a handle on the fundamentals, you will get hands-on practice deploying Java applications on Kubernetes and App Engine (the latter is the same framework that powers Snapchat!) With specialized bonus labs that teach user authentication and backend service development, this quest will give you practical experience so you can start developing robust Java applications straight away.
Get Anthos Ready. Demand for Google Kubernetes Engine is growing, and customers are looking to Google and its partners to provide in-depth technical knowledge. This first Google Kubernetes Engine-centric Quest of best practices hands-on labs will get you started containerizing to modernize in place , and then managing your deployed apps and services -- with monitoring, tracing, and logging.
Cloud Logging is a fully managed service that performs at scale. It can ingest application and system log data from thousands of VMs and, even better, analyze all that log data in real time. In this fundamental-level Quest, you learn how to store, search, analyze, monitor, and alert on log data and events from Google Cloud. The labs in the Quest give you hands-on practice using Cloud Logging to maximize your learning experience and provide insight on how you can use Cloud Logging to your own Google Cloud environment.
The Google Cloud Platform provides many different frameworks and options to fit your application’s needs. In this introductory-level quest, you will get plenty of hands-on practice deploying sample applications on Google App Engine. You will also dive into other web application frameworks like Firebase, Wordpress, and Node.js and see firsthand how they can be integrated with Google Cloud.
In this introductory-level quest, you will learn the fundamentals of developing and deploying applications on the Google Cloud Platform. You will get hands-on experience with the Google App Engine framework by launching applications written in languages like Python, Ruby, and Java (just to name a few). You will see first-hand how straightforward and powerful GCP application frameworks are, and how easily they integrate with GCP database, data-loss prevention, and security services.
Cloud SQL is a fully managed database service that stands out from its peers due to high performance, seamless integration, and impressive scalability. In this quest you will receive hands-on practice with the basics of Cloud SQL and quickly progress to advanced features, which you will apply to production frameworks and application environments. From creating instances and querying data with SQL, to building Deployment Manager scripts and connecting Cloud SQL instances with applications run on GKE containers, this quest will give you the knowledge and experience needed so you can start integrating this service right away.
Cette quête est la deuxième d'une série en deux parties consacrée aux principes de base de la gestion des coûts et de la facturation GCP. Elle convient plus particulièrement aux personnes qui travaillent dans des services technologiques ou financiers, et qui sont chargées d'optimiser l'infrastructure cloud de leur organisation. Dans cette quête, vous allez découvrir plusieurs façons de maîtriser et d'optimiser les coûts GCP, y compris en établissant des budgets et des alertes, en gérant les limites de quota et en bénéficiant de remises sur engagement d'utilisation. Dans les ateliers pratiques, vous utiliserez divers outils pour maîtriser et optimiser vos coûts GCP, ou pour inciter vos équipes technologiques à suivre les bonnes pratiques dans ce domaine.
La sécurité est un aspect primordial des services Google Cloud. C'est pourquoi Google Cloud a développé des outils spécifiques pour garantir la sécurité de vos projets et le bon fonctionnement de l'authentification. Dans ce cours d'introduction, vous allez pouvoir vous familiariser avec le service Identity and Access Management (IAM) de Google Cloud, la référence en termes de gestion des comptes utilisateur et de machines virtuelles. Vous développerez vos compétences en sécurité réseau en provisionnant des VPC et des VPN, et vous découvrirez les outils existants pour lutter contre les menaces de sécurité et la perte de données.
Si vous êtes un développeur cloud débutant et recherchez des exercices pratiques plus poussés au-delà des bases de Google Cloud, ce cours est fait pour vous. Il vous permettra d'acquérir de l'expérience pratique grâce aux ateliers qui traitent en profondeur de Cloud Storage et d'autres services applicatifs clés tels que Monitoring et Cloud Functions. Vous développerez des compétences précieuses que vous pourrez utiliser dans tous vos projets Google Cloud.
Surpassez vos concurrents grâce au DevOps. Le DevOps est un mouvement organisationnel et culturel visant à accélérer la livraison de logiciels, à améliorer la fiabilité des services et à permettre aux acteurs du développement logiciel d'être copropriétaires de leur travail. Dans ce cours, vous allez apprendre à utiliser Google Cloud pour optimiser les délais, la stabilité, la disponibilité et la sécurité de vos livraisons de logiciels. Le programme DevOps Research and Assessment a rejoint Google Cloud. Comment votre équipe se positionne-t-elle ? Répondez à ce quiz à choix multiples de cinq questions pour le découvrir !
La méthodologie de migration des VM de Google Cloud fournit aux utilisateurs un chemin défini et reproductible. Dans cette quête, vous vous familiariserez avec cette séquence de migration en quatre phases. Vous établirez des rapports d'évaluation avec CloudPhysics, vous utiliserez les modèles d'infrastructure en tant que code de Terraform, vous effectuerez des migrations Lift and Shift avec Cloud Endure et pour finir, vous répliquerez des applications sous la forme de charges de travail cloud natives. Inscrivez-vous à cette quête et familiarisez-vous avec les solutions Google pour la migration de VM. En prime, pour ceux qui ont besoin d'une petite révision, nous incluons un atelier de présentation de Google Kubernetes Engine.
Kubernetes est le système d'orchestration de conteneurs le plus populaire, et Google Kubernetes Engine a été conçu spécifiquement pour les déploiements gérés de Kubernetes dans Google Cloud. Dans ce cours de niveau avancé, vous allez suivre des ateliers pratiques pour apprendre à configurer les images et les conteneurs Docker, ainsi qu'à déployer des applications Kubernetes Engine opérationnelles. Vous allez également acquérir les compétences nécessaires pour intégrer l'orchestration de conteneurs à votre propre workflow. Vous cherchez un atelier challenge pratique pour démontrer vos compétences et valider vos connaissances ? Suivez cet atelier challenge complémentaire après avoir terminé ce cours et le cours Déployer des applications Kubernetes sur Google Cloud pour recevoir un badge numérique Google Cloud exclusif.
Cette quête s'adresse particulièrement aux personnes qui travaillent dans les technologies ou les finances et qui sont responsables de la gestion des coûts de GCP. Vous apprendrez à configurer un compte de facturation, à organiser les ressources et à gérer les autorisations d'accès à la facturation. Grâce aux ateliers pratiques, vous apprendrez à visualiser votre facture, à suivre vos coûts GCP à l'aide de rapports de facturation, à analyser vos données de facturation avec BigQuery ou Google Sheets et à créer des tableaux de bord de facturation personnalisés avec Data Studio.
Cette quête d'introduction se compose d'ateliers pratiques qui vous permettent de vous familiariser avec les outils et services de base de Google Cloud Platform. "GCP Essentials" est la première quête recommandée pour les personnes s'intéressant à Google Cloud. Vous pouvez la suivre sans aucune connaissance (ou presque) du cloud et, une fois la quête terminée, vous disposerez de compétences pratiques qui vous seront utiles pour n'importe quel projet GCP. De l'écriture de lignes de commande Cloud Shell au déploiement de votre première machine virtuelle en passant par l'exécution d'applications sur Kubernetes Engine avec l'équilibrage de charge, "GCP Essentials" constitue une excellente introduction aux fonctionnalités de base de la plate-forme. Des vidéos d'une minute résument les concepts clés de ces ateliers.