Hùng Võ Phi
회원 가입일: 2022
골드 리그
25330포인트
회원 가입일: 2022
Complete the introductory Create and Manage Cloud SQL for PostgreSQL Instances skill badge to demonstrate skills in the following: migrating, configuring, and managing Cloud SQL for PostgreSQL instances and databases.
빅데이터, 머신러닝, 인공지능은 오늘날 인기 있는 컴퓨팅 관련 주제이지만 매우 전문화된 분야이기 때문에 초급용 자료를 구하기 어렵습니다. 다행히도 Google Cloud는 이러한 분야에서 사용자 친화적인 서비스를 제공하며 초급 과정을 통해 학습자에게 BigQuery, Cloud Speech API, Video Intelligence와 같은 도구를 사용해 시작할 기회를 제공합니다.
In this self-paced training course, participants learn mitigations for attacks at many points in a Google Cloud-based infrastructure, including Distributed Denial-of-Service attacks, phishing attacks, and threats involving content classification and use. They also learn about the Security Command Center, cloud logging and audit logging, and using Forseti to view overall compliance with your organization's security policies.
Using large scale computing power to recognize patterns and "read" images is one of the foundational technologies in AI, from self-driving cars to facial recognition. The Google Cloud Platform provides world class speed and accuracy via systems that can utilized by simply calling APIs. With these and a host of other APIs, GCP has a tool for just about any machine learning job. In this introductory quest, you will get hands-on practice with machine learning as it applies to image processing by taking labs that will enable you to label images, detect faces and landmarks, as well as extract, analyze, and translate text from within images.
모두 알다시피 머신러닝은 빠르게 성장 중인 기술 분야 중 하나입니다. Google Cloud Platform(GCP)은 이러한 발전을 촉진하는 데 중요한 역할을 했습니다. GCP는 다양한 API를 통해 거의 모든 머신러닝 작업에 적합한 도구를 제공합니다. 이 초급 과정에서는 실무형 실습을 통해 머신러닝을 언어 처리에 적용하는 방법을 알아봅니다. 실습에 참여하여 텍스트에서 항목을 추출하고 감정 및 구문 분석을 수행하며 스크립트 작성에 Speech-to-Text API를 사용해 보세요.
Google Cloud 앱 개발 환경 설정 과정을 완료하여 기술 배지를 획득하세요. Cloud Storage, Identity and Access Management, Cloud Functions, Pub/Sub의 기본 기능을 사용하여 스토리지 중심 클라우드 인프라를 구축하고 연결하는 방법을 배울 수 있습니다.
이 과정은 Google Cloud 기본 개념 과정 이상의 지식을 얻기 위해 실무형 실습을 찾는 초보 클라우드 개발자에게 도움이 됩니다. 실습을 통해 Cloud Storage와 Monitoring 및 Cloud Functions 등 기타 주요 애플리케이션 서비스를 자세히 살펴보며 실무 경험을 쌓게 됩니다. 모든 Google Cloud 이니셔티브에 적용할 수 있는 유용한 기술을 개발할 수 있습니다.
초급 Looker에서 LookML 객체 빌드 기술 배지 과정을 완료하여 새로운 측정기준 및 측정값, 뷰, 파생 테이블을 빌드하고, 요구사항에 따라 측정 필터 및 유형을 설정하고, 측정기준과 측정값을 업데이트하고, Explore를 빌드 및 미세 조정하고, 기존 Explore에 뷰를 조인하고, 비즈니스 요구사항에 따라 생성할 LookML 객체를 결정하는 기술 역량을 입증할 수 있습니다.
중급 Google Cloud에서 Terraform으로 인프라 빌드 기술 배지 과정을 완료하여 Terraform을 사용하는 코드형 인프라(IaC) 원칙, Terraform 구성으로 Google Cloud 리소스 프로비저닝 및 관리, 효과적인 상태 관리(로컬 및 원격), 재사용성 및 구성을 위한 Terraform 코드 모듈화 등에 관한 기술을 입증하세요.
중급 BigQuery에서 예측 데이터 분석 수행 기술 배지 과정을 완료하여 CSV 및 JSON 파일을 가져와 BigQuery에서 데이터 세트를 만들고, BigQuery ML을 사용하여 축구 이벤트 데이터로 기대 득점 모델을 학습하고 월드컵 골의 인상도를 평가하는 등 고급 SQL 분석 개념을 갖추고 BigQuery를 활용하는 기술 역량을 입증할 수 있습니다.
초급 Google Cloud 리소스 모니터링 및 관리 기술 배지 과정을 완료하여 IAM 권한 부여 및 취소, 모니터링 및 로깅 에이전트 설치, 이벤트 기반 Cloud Run 함수 생성, 배포, 테스트에 대한 기술 역량을 입증하세요.
Natural Language API를 사용한 감정 분석 퀘스트를 완료하고 기술 배지를 획득하세요. API가 텍스트에서 감정을 추론하는 방법을 배울 수 있습니다.
Earn a skill badge by completing the Analyze Images with the Cloud Vision API quest, where you discover how to leverage the Cloud Vision API for various tasks, including extracting text from images.
Google API를 사용한 음성 및 언어 분석 과정을 완료하고 기술 배지를 획득하세요. 이 과정에서는 실제 환경에서 Natural Language API와 Speech API를 사용하는 방법을 알아봅니다.
중급 Google Cloud에서 Kubernetes 관리 기술 배지 과정을 완료하여 kubectl로 배포 관리, Google Kubernetes Engine(GKE)에서 애플리케이션 디버깅 및 모니터링, 지속적 배포 기법과 관련된 기술 역량을 입증하세요.
생성형 AI 입문자 - Vertex AI 과정은 Google Cloud에서 생성형 AI를 사용하는 방법에 대한 실습으로 이루어져 있습니다. 실습을 통해 다음을 알아봅니다. text-bison, chat-bison, textembedding-gecko을 포함한 Vertex AI PaLM API 제품군에서 모델을 사용하는 방법을 알아봅니다. 프롬프트 설계, 권장사항에 대해 배우고 아이디어 구상, 텍스트 분류, 텍스트 추출, 텍스트 요약 등에 이를 사용하는 방법도 학습합니다. 또한 Vertex AI 커스텀 학습으로 파운데이션 모델을 학습시켜 모델을 조정하는 방법과 Vertex AI 엔드포인트에 배포하는 방법도 알아봅니다.
초급 Compute Engine에서 Cloud Load Balancing 구현하기 기술 배지 과정을 완료하여 Compute Engine에서 가상 머신 만들기 및 배포, 네트워크 및 애플리케이션 부하 분산기 구성과 관련된 기술 역량을 입증하세요.
Machine Learning is one of the most innovative fields in technology, and the Google Cloud Platform has been instrumental in furthering its development. With a host of APIs, Google Cloud has a tool for just about any machine learning job. In this advanced-level course, you will get hands-on practice with machine learning at scale and how to employ the advanced ML infrastructure available on Google Cloud.
Data Catalog is deprecated and will be discontinued on January 30, 2026. You can still complete this course if you want to. For steps to transition your Data Catalog users, workloads, and content to Dataplex Catalog, see Transition from Data Catalog to Dataplex Catalog (https://cloud.google.com/dataplex/docs/transition-to-dataplex-catalog). Data Catalog is a fully managed and scalable metadata management service that empowers organizations to quickly discover, understand, and manage all of their data. In this quest you will start small by learning how to search and tag data assets and metadata with Data Catalog. After learning how to build your own tag templates that map to BigQuery table data, you will learn how to build MySQL, PostgreSQL, and SQLServer to Data Catalog Connectors.
TensorFlow is an open source software library for high performance numerical computation that's great for writing models that can train and run on platforms ranging from your laptop to a fleet of servers in the Cloud to an edge device. This quest takes you beyond the basics of using predefined models and teaches you how to build, train and deploy your own on Google Cloud.
In this advanced-level quest, you will learn how to harness serious Google Cloud computing power to run big data and machine learning jobs. The hands-on labs will give you use cases, and you will be tasked with implementing big data and machine learning practices utilized by Google’s very own Solutions Architecture team. From running Big Query analytics on tens of thousands of basketball games, to training TensorFlow image classifiers, you will quickly see why Google Cloud is the go-to platform for running big data and machine learning jobs.
In this series of labs you will learn how to use BigQuery to analyze NCAA basketball data with SQL. Build a Machine Learning Model to predict the outcomes of NCAA March Madness basketball tournament games.
중급 Google Cloud에서 Terraform으로 인프라 빌드 기술 배지 과정을 완료하여 Terraform을 사용하는 코드형 인프라(IaC) 원칙, Terraform 구성으로 Google Cloud 리소스 프로비저닝 및 관리, 효과적인 상태 관리(로컬 및 원격), 재사용성 및 구성을 위한 Terraform 코드 모듈화 등에 관한 기술을 입증하세요.
Google Cloud 앱 개발 환경 설정 과정을 완료하여 기술 배지를 획득하세요. Cloud Storage, Identity and Access Management, Cloud Functions, Pub/Sub의 기본 기능을 사용하여 스토리지 중심 클라우드 인프라를 구축하고 연결하는 방법을 배울 수 있습니다.
Google Cloud 네트워크 개발 과정을 완료하고 기술 배지를 획득하세요. 이 과정에서는 IAM 역할 탐색 및 프로젝트 액세스 권한 추가/삭제, VPC 네트워크 생성, Compute Engine VM 배포 및 모니터링, SQL 쿼리 작성, Compute Engine에서 VM 배포 및 모니터링, Kubernetes를 여러 배포 접근 방식과 함께 사용하여 애플리케이션을 배포하는 등의 다양한 애플리케이션 배포 및 모니터링 방법을 배울 수 있습니다.
이 초급 과정에서는 다른 과정과 차별화된 실습을 제공합니다. 이 과정은 IT 전문가에게 Google Cloud 공인 어소시에이트 클라우드 엔지니어 자격증 시험에서 다루는 주제와 서비스에 대한 실무형 실습을 제공하도록 선별되었습니다. IAM, 네트워킹, Kubernetes Engine 배포 등에 대해 다루며 Google Cloud 지식을 테스트해 볼 수 있는 구체적인 실습으로 구성되어 있습니다. 이러한 실습만으로도 기술과 역량을 향상시킬 수 있지만 시험 가이드 및 함께 제공되는 다른 준비용 리소스도 검토해 보시기 바랍니다.
Networking is a principle theme of cloud computing. It’s the underlying structure of Google Cloud, and it’s what connects all your resources and services to one another. This course will cover essential Google Cloud networking services and will give you hands-on practice with specialized tools for developing mature networks. From learning the ins-and-outs of VPCs, to creating enterprise-grade load balancers, Automate Deployment and Manage Traffic on a Google Cloud Network will give you the practical experience needed so you can start building robust networks right away.
중급 Google Cloud에서 DevOps 워크플로 구현 기술 배지 과정을 완료하여 Cloud Source Repositories로 Git 저장소 만들기, Google Kubernetes Engine(GKE)에서 배포 실행, 관리, 확장, 그리고 컨테이너 이미지 빌드 및 GKE로의 배포를 자동화하는 CI/CD 파이프라인 설계 등에 관한 기술을 입증하세요.
중급 Google Cloud에서 Kubernetes 애플리케이션 배포하기 기술 배지 과정을 완료하여 Docker 컨테이너 이미지 구성 및 빌드, Google Kubernetes Engine(GKE) 클러스터 생성 및 관리, kubectl을 활용한 효율적인 클러스터 관리, 강력한 지속적 배포(CD) 관행으로 Kubernetes 애플리케이션 배포를 위한 기술을 갖추었음을 입증하세요.
중급 Firebase로 서버리스 앱 개발 기술 배지 과정을 완료하여 Firebase를 사용한 서버리스 웹 애플리케이션 설계 및 빌드, 데이터베이스 관리에 Firestore 활용, Cloud Build를 사용하여 배포 프로세스 자동화, 애플리케이션에 Google 어시스턴트 기능 통합 등에 관한 기술을 입증하세요.
Google Cloud에서 웹사이트 빌드 기술 배지 과정을 완료하고 입문 기술 배지를 획득하세요. 이 과정은 Get Cooking in Cloud 시리즈를 기반으로 하며 다음 내용을 다룹니다. Cloud Run에 웹사이트 배포Compute Engine에 웹 앱 호스팅Google Kubernetes Engine에 웹사이트 생성, 배포, 확장Cloud Build를 사용하여 모놀리식 애플리케이션에서 마이크로서비스 아키텍처로 마이그레이션
This intermediate-level quest is unique among Qwiklabs quests. These labs have been curated to give operators hands-on practice with Anthos—a new, open application modernization platform on Google Cloud. Anthos enables you to build and manage modern hybrid applications. Tasks include: installing service mesh, collecting telemetry, and securing your microservices with service mesh policies. This quest is composed of labs targeted to teach you everything you need to know to introduce service mesh, and Anthos, into your next hybrid cloud project.
This course helps learners create a study plan for the PDE (Professional Data Engineer) certification exam. Learners explore the breadth and scope of the domains covered in the exam. Learners assess their exam readiness and create their individual study plan.
This on-demand course equips students to understand, configure, and maintain multi-cluster Kubernetes infrastructures using Anthos GKE, and Istio-based service mesh, whether deployed with Anthos on Google Cloud or with Anthos deployed on VMware. This is the third, and final, course of the Architecting Hybrid Cloud Infrastructure with Anthos series. Completion of the Architecting with Google Kubernetes Engine path is a prerequisite for this course.
This on-demand course equips students to understand and adopt Istio-based service-mesh with Anthos for centralized observability, traffic management, and service-level security. This is the second course of the Architecting Hybrid Cloud Infrastructure with Anthos series. After completing this course, learners should continue to the Hybrid Cloud Multi-Cluster with Anthos course. Completion of the Architecting with Google Kubernetes Engine path is a prerequisite for this course.
Kubernetes는 가장 인기 있는 컨테이너 조정 시스템이며, Google Kubernetes Engine은 Google Cloud에서 관리형 Kubernetes 배포를 지원하도록 특별히 설계되었습니다. 이 고급 과정에서는 Docker 이미지, 컨테이너를 구성하고 완전한 Kubernetes Engine 애플리케이션을 배포하는 실무형 실습을 진행합니다. 이 과정에서는 컨테이너 조정을 자체 워크플로에 통합하는 데 필요한 실용적인 기술을 알려드립니다. 기술을 입증하고 지식을 확인할 실무형 챌린지 실습을 찾고 계신가요? 이 과정을 마친 후 추가로 챌린지 실습을 완료하여 전용 Google Cloud 디지털 배지를 받으세요. 이 챌린지 실습은 Google Cloud에서 Kubernetes 애플리케이션 배포하기 과정이 끝나면 제공됩니다.
Blockchain and related technologies, such as distributed ledger and distributed apps, are becoming new value drivers and solution priorities in many industries. In this course you will gain hands-on experience with distributed ledger and the exploration of blockchain datasets in Google Cloud. It brings the research and solution work of Google's Allen Day into self-paced labs for you to run and learn directly. Since this course uses advanced SQL in BigQuery, a SQL-in-BigQuery refresher lab is at the start.
Welcome to Hybrid Cloud Infrastructure Foundations with Anthos! This is the first course of the Architecting Hybrid Cloud Infrastructure with Anthos path. Anthos enables you to build and manage modern applications, and gives you the freedom to choose where to run them. Anthos gives you one consistent experience in both your on-premises and cloud environments. During this course, you will be presented with modules that will take you through skills that you will use as an architect or administrator running Anthos environments. The modules in this course include videos, hands-on labs, and links to helpful documentation.
Vertex AI에서 머신러닝 솔루션 빌드 및 배포하기 과정을 완료하여 중급 기술 배지를 획득하세요. 이 과정에서는 Google Cloud의 Vertex AI Platform, AutoML, 커스텀 학습 서비스를 사용해 머신러닝 모델을 학습, 평가, 조정, 설명, 배포하는 방법을 알아봅니다. 이 기술배지 과정은 전문 데이터 과학자 및 머신러닝 엔지니어를 대상으로 합니다. 기술 배지는 Google Cloud 제품 및 서비스 숙련도에 따라 Google Cloud에서 독점적으로 발급하는 디지털 배지로, 기술 배지 과정을 통해 대화형 실습 환경에서 지식을 적용하는 역량을 테스트할 수 있습니다. 이 기술 배지 과정과 최종 평가 챌린지 실습을 완료하면 네트워크에 공유할 수 있는 디지털 배지를 받게 됩니다.
Architecting with Google Kubernetes Engine: Foundations' 과정에서는 Google Cloud의 레이아웃 및 원리를 살펴본 후 소프트웨어 컨테이너를 생성 및 관리하는 방법과 Kubernetes 아키텍처에 대해 알아봅니다. Architecting with Google Kubernetes Engine 시리즈의 첫 번째 과정입니다. 이 과정을 이수한 후 Architecting with Google Kubernetes Engine: Workloads 과정에 등록하세요.
Document AI로 데이터 캡처 자동화하기 과정을 완료하고 초급 기술 배지를 획득하세요. 이 과정에서는 Document AI를 사용하여 데이터를 추출, 처리, 캡처하는 방법을 알아봅니다.
초급 Looker 대시보드 및 보고서를 위해 데이터 준비하기 기술 배지 과정을 완료하면 데이터를 필터링, 정렬, 피벗팅하고, 다른 Looker Explore의 결과를 병합하고, 함수 및 연산자를 사용해 데이터 분석 및 시각화를 위한 Looker 대시보드 및 보고서를 빌드하는 기술 역량을 입증할 수 있습니다.
중급 BigQuery ML로 ML 모델 만들기 기술 배지 과정을 완료하면 BigQuery ML로 머신러닝 모델을 만들고 평가하여 데이터 예측을 수행하는 기술 역량을 입증할 수 있습니다. 기술 배지는 Google Cloud 제품 및 서비스 숙련도에 따라 Google Cloud에서 독점적으로 발급하는 디지털 배지로, 기술 배지 과정을 통해 대화형 실습 환경에서 지식을 적용하는 역량을 테스트할 수 있습니다. 이 기술 배지 과정과 최종 평가 챌린지 실습을 완료하면 네트워크에 공유할 수 있는 기술 배지를 받을 수 있습니다.
초급 BigQuery 데이터에서 인사이트 도출 기술 배지 과정을 완료하여 SQL 쿼리 작성, 공개 테이블 쿼리, BigQuery로 샘플 데이터 로드, BigQuery의 쿼리 검사기를 통한 일반적인 문법 오류 문제 해결, BigQuery 데이터를 연결해 Looker Studio에서 보고서를 생성하는 작업과 관련된 기술 역량을 입증하세요.
중급 BigQuery ML을 사용한 예측 모델링을 위한 데이터 엔지니어링 기술 배지를 획득하여 Dataprep by Trifact로 데이터 변환 파이프라인을 BigQuery에 빌드, Cloud Storage, Dataflow, BigQuery를 사용한 ETL(추출, 변환, 로드) 워크플로 빌드, BigQuery ML을 사용하여 머신러닝 모델을 빌드하는 기술 역량을 입증할 수 있습니다.