A medida que aumenta el uso empresarial de la inteligencia artificial y el aprendizaje automático, también crece la importancia de implementarlo responsablemente. El desafío para muchas personas es que hablar sobre la IA responsable puede ser más fácil que aplicarla. Si te interesa aprender cómo poner en funcionamiento la IA responsable en tu organización, este curso es para ti. En este curso, aprenderás cómo Google Cloud aplica estos principios en la actualidad, junto con las prácticas recomendadas y las lecciones aprendidas, para usarlos como marco de trabajo de modo que puedas crear tu propio enfoque de IA responsable.
Completa la insignia de habilidad del curso introductorio Diseño de instrucciones en Vertex AI y demuestra tus habilidades para realizar las siguientes actividades: ingeniería de instrucciones, análisis de imágenes y aplicación de técnicas generativas multimodales en Vertex AI. Descubre cómo crear instrucciones eficaces, guía las respuestas de la IA generativa y aplica modelos de Gemini en situaciones de marketing de la vida real.
This course introduces the products and solutions to solve NLP problems on Google Cloud. Additionally, it explores the processes, techniques, and tools to develop an NLP project with neural networks by using Vertex AI and TensorFlow.
This course describes different types of computer vision use cases and then highlights different machine learning strategies for solving these use cases. The strategies vary from experimenting with pre-built ML models through pre-built ML APIs and AutoML Vision to building custom image classifiers using linear models, deep neural network (DNN) models or convolutional neural network (CNN) models. The course shows how to improve a model's accuracy with augmentation, feature extraction, and fine-tuning hyperparameters while trying to avoid overfitting the data. The course also looks at practical issues that arise, for example, when one doesn't have enough data and how to incorporate the latest research findings into different models. Learners will get hands-on practice building and optimizing their own image classification models on a variety of public datasets in the labs they will work on.
En este curso, los profesionales del aprendizaje automático aprenderán a utilizar las herramientas, las técnicas y las prácticas recomendadas indispensables para evaluar los modelos de IA generativa y predictiva. La evaluación de modelos es una disciplina esencial para garantizar que los sistemas de AA arrojen resultados confiables, exactos y de alto rendimiento en la producción. Los participantes obtendrán información exhaustiva sobre diversas métricas y metodologías de evaluación, además de su aplicación adecuada en diferentes tipos de modelos y tareas. En este curso, se hará énfasis en los desafíos únicos que presentan los modelos de IA generativa y se ofrecerán estrategias para abordarlos de manera eficaz. Con la plataforma de Vertex AI de Google Cloud, los participantes aprenderán a implementar los procesos sólidos de evaluación para la selección, optimización y supervisión continua de modelos.
Completa la insignia de habilidad intermedia Inspecciona documentos enriquecidos con Gemini multimodal y RAG multimodal para demostrar tus habilidades para realizar las siguientes actividades: usar instrucciones multimodales para extraer información de datos visuales y de texto, generar la descripción de un video y recuperar información adicional más allá del video utilizando la multimodalidad con Gemini; crear metadatos de documentos que contengan imágenes y texto, obtener todos los fragmentos de texto relevantes e imprimir las citas con la generación mejorada por recuperación (RAG) multimodal con Gemini.
Usar potencia de procesamiento a gran escala para reconocer patrones y “leer” imágenes es una de las tecnologías fundamentales de la IA, que, por ejemplo, se usa en los vehículos autónomos y el reconocimiento facial. Google Cloud proporciona velocidad y precisión de primer nivel a través de sistemas que se pueden utilizar con solo llamar a las APIs. Con estas y muchas otras APIs, Google Cloud cuenta con herramientas para casi cualquier trabajo de aprendizaje automático. En este curso introductorio, obtendrás experiencia práctica con el aprendizaje automático a medida que se aplica a procesamiento de imágenes en labs que te permitirán etiquetar imágenes, detectar rostros y puntos de referencia, y también extraer, analizar y traducir texto de las imágenes.
Los macrodatos, el aprendizaje automático y la Inteligencia Artificial son temas informáticos populares en la actualidad; sin embargo, estos campos son muy especializados y es difícil conseguir material básico. Por suerte, Google Cloud proporciona servicios fáciles de usar en estas áreas y, con este curso de nivel básico, puedes dar tus primeros pasos con herramientas como BigQuery, la API de Cloud Speech y Video Intelligence.
En este curso, se presentan los conceptos de interpretabilidad y transparencia de la IA, así como se menciona la importancia de la transparencia de la IA para los ingenieros y desarrolladores. Se exploran métodos y herramientas funcionales para ayudar a lograr la interpretabilidad y transparencia en los modelos de IA y datos.
En este curso, explorarás tecnologías, herramientas y aplicaciones de búsqueda potenciadas por IA. Aprende sobre las búsquedas semánticas utilizando embeddings de vectores, acerca de las búsquedas híbridas combinando enfoques semánticos y de palabras clave, y sobre la generación mejorada por recuperación (RAG) minimizando las alucinaciones como un agente de IA fundamentado. Adquiere experiencia práctica con Vector Search de Vertex AI para desarrollar tu motor de búsqueda inteligente.
En este curso, se presenta Vertex AI Studio, una herramienta para interactuar con modelos de IA generativa, crear prototipos de ideas de negocio y llevarlas a producción. A través de un caso de uso envolvente, lecciones atractivas y un lab práctico, explorarás el ciclo de vida desde la instrucción hasta el producto y aprenderás cómo aprovechar Vertex AI Studio para aplicaciones multimodales de Gemini, diseño de instrucciones, ingeniería de instrucciones y ajuste de modelos. El objetivo es permitirte desbloquear el potencial de la IA generativa en tus proyectos con Vertex AI Studio.
Artificial Intelligence (AI) offers transformative possibilities, but it also introduces new security challenges. This course equips security and data protection leaders with strategies to securely manage AI within their organizations. Learn a framework for proactively identifying and mitigating AI-specific risks, protecting sensitive data, ensuring compliance, and building a resilient AI infrastructure. Pick use cases from four different industries to explore how these strategies apply in real-world scenarios.
En este curso, se presenta una introducción a los modelos de difusión: una familia de modelos de aprendizaje automático que demostraron ser muy prometedores en el área de la generación de imágenes. Los modelos de difusión se inspiran en la física, específicamente, en la termodinámica. En los últimos años, los modelos de difusión se han vuelto populares tanto en investigaciones como en la industria. Los modelos de difusión respaldan muchos de los modelos de generación de imágenes y herramientas vanguardistas de Google Cloud. En este curso, se presenta la teoría detrás de los modelos de difusión y cómo entrenarlos y, luego, implementarlos en Vertex AI.
This course introduces you to the world of reliable deep learning, a critical discipline focused on developing machine learning models that not only make accurate predictions but also understand and communicate their own uncertainty. You'll learn how to create AI systems that are trustworthy, robust, and adaptable, particularly in high-stakes scenarios where errors can have significant consequences.
Earn a skill badge by completing the Detect Manufacturing Defects using Visual Inspection AI course, where you learn how to use Visual Inspection AI to deploy a solution artifact and test that it can successfully identify defects in a manufacturing process.
Este curso ayuda a los participantes a crear un plan de estudio para el examen de certificación de PDE (Professional Data Engineer). Los alumnos conocerán la amplitud y el alcance de los dominios que se incluyen en el examen. Además, evaluarán su nivel de preparación para el examen y crearán un plan de estudio personal.
En este curso, se presentan temas importantes relacionados con la privacidad y seguridad de la IA. Se exploran herramientas y métodos prácticos para implementar prácticas recomendadas de privacidad y seguridad de la IA a través del uso de productos de Google Cloud y herramientas de código abierto.
Earn the intermediate Skill Badge by completing the Classify Images with TensorFlow on Google Cloud skill badge course where you learn how to use TensorFlow and Vertex AI to create and train machine learning models. You primarily interact with Vertex AI Workbench user-managed notebooks.
Machine Learning is one of the most innovative fields in technology, and the Google Cloud Platform has been instrumental in furthering its development. With a host of APIs, Google Cloud has a tool for just about any machine learning job. In this advanced-level course, you will get hands-on practice with machine learning at scale and how to employ the advanced ML infrastructure available on Google Cloud.
En este curso, se exploran los beneficios de utilizar Vertex AI Feature Store, cómo mejorar la exactitud de los modelos de AA y cómo descubrir cuáles columnas de datos producen los atributos más útiles. El curso también incluye contenido y labs sobre la ingeniería de atributos en los que se usan BigQuery ML, Keras y TensorFlow.
En este curso, se presentan a los participantes las herramientas y prácticas recomendadas de MLOps para implementar, evaluar, supervisar y operar sistemas de AA de producción en Google Cloud. Las MLOps son una disciplina enfocada en la implementación, prueba, supervisión y automatización de sistemas de AA en producción. Los estudiantes obtendrán experiencia práctica con la transferencia de transmisión de Vertex AI Feature Store en la capa de SDK.
En este curso, se presentan los conceptos de la IA responsable y los principios de la IA. Se abordan técnicas para identificar de forma práctica la equidad y los sesgos, y mitigar los sesgos en las prácticas de IA/AA. Se exploran métodos y herramientas funcionales para implementar prácticas recomendadas de la IA responsable con productos de Google Cloud y herramientas de código abierto.
En este curso, se presentan a los participantes las herramientas y prácticas recomendadas de MLOps para implementar, evaluar, supervisar y operar sistemas de AA de producción en Google Cloud. Las MLOps son una disciplina enfocada en la implementación, prueba, supervisión y automatización de sistemas de AA en producción. Los ingenieros profesionales de aprendizaje automático usan herramientas para mejorar y evaluar continuamente los modelos implementados. Trabajan con científicos de datos (o pueden serlo) que desarrollan modelos para ofrecer velocidad y rigor en la implementación de modelos con el mejor rendimiento.
Google Threat Intelligence provides unmatched visibility into threats by delivering detailed and timely threat intelligence to security teams around the world. This course covers the various capabilities of Google Threat Intelligence and common ways that organizations use this product to proactively mitigate threats.
En este curso, se te enseña a crear un modelo de generación de leyendas de imágenes con el aprendizaje profundo. Aprenderás sobre los distintos componentes de los modelos de generación de leyendas de imágenes, como el codificador y el decodificador, y cómo entrenar y evaluar tu modelo. Al final del curso, podrás crear tus propios modelos y usarlos para generar leyendas de imágenes.
Specifically designed for healthcare professionals, this course demystifies generative AI, the latest breakthrough in artificial intelligence, and the large language models (LLMs) that drive it. Discover real-world applications of generative AI in healthcare settings and master the art of crafting effective prompts tailored to your goals.
Este curso es una introducción al mecanismo de atención, una potente técnica que permite a las redes neuronales enfocarse en partes específicas de una secuencia de entrada. Sabrás cómo funciona la atención y cómo puede utilizarse para mejorar el rendimiento de diversas tareas de aprendizaje automático, como la traducción automática, el resumen de textos y la respuesta a preguntas.
En este curso, se presentan la arquitectura de transformadores y el modelo de Bidirectional Encoder Representations from Transformers (BERT). Aprenderás sobre los componentes principales de la arquitectura de transformadores, como el mecanismo de autoatención, y cómo se usa para crear el modelo BERT. También aprenderás sobre las diferentes tareas para las que puede usarse BERT, como la clasificación de texto, la respuesta de preguntas y la inferencia de lenguaje natural. Tardarás aproximadamente 45 minutos en completar este curso.
Este es un curso introductorio de microaprendizaje destinado a explicar qué es la IA responsable, por qué es importante y cómo la implementa Google en sus productos. También se presentan los 7 principios de la IA de Google.
La Inteligencia Artificial (IA) ofrece posibilidades transformadoras, aunque también presenta nuevos desafíos de seguridad. En este curso, los líderes de seguridad y protección de datos aprenderán las estrategias para administrar de forma segura la IA en sus organizaciones. Descubre un framework para identificar y mitigar proactivamente riesgos específicos de la IA, proteger datos sensibles, garantizar el cumplimiento y crear una Infraestructura de IA resiliente. Elige casos de uso de cuatro sectores diferentes para explorar cómo se aplican estas estrategias a situaciones del mundo real.
TensorFlow is an open source software library for high performance numerical computation that's great for writing models that can train and run on platforms ranging from your laptop to a fleet of servers in the Cloud to an edge device. This quest takes you beyond the basics of using predefined models and teaches you how to build, train and deploy your own on Google Cloud.
En este curso, se brinda un resumen de la arquitectura de codificador-decodificador, una arquitectura de aprendizaje automático importante y potente para realizar tareas de secuencia por secuencia, como las de traducción automática, resúmenes de texto y respuestas a preguntas. Aprenderás sobre los componentes principales de la arquitectura de codificador-decodificador y cómo entrenar y entregar estos modelos. En la explicación del lab, programarás una implementación sencilla de la arquitectura de codificador-decodificador en TensorFlow para generar poemas desde un comienzo.
El objetivo de este curso es equiparte con los conocimientos y las herramientas que necesitas para descubrir los desafíos únicos que enfrentan los equipos de MLOps cuando implementan y administran modelos de IA generativa, y explorar cómo Vertex AI fortalece a los equipos de IA para optimizar los procesos de MLOps y alcanzar el éxito en los proyectos de IA generativa.
La inteligencia artificial (IA) y el aprendizaje automático (AA) representan una evolución importante en las tecnologías de la información que están transformando rápidamente una amplia variedad de sectores. En el curso “Innova con la Inteligencia Artificial de Google Cloud”, se exploran las maneras en que las organizaciones pueden usar la IA y el AA para transformar sus procesos empresariales. Como parte de la ruta de aprendizaje de Líder digital de Cloud, el objetivo de este curso es ayudar a las personas a crecer en su rol y desarrollar el futuro de su empresa.
Este es un curso introductorio de microaprendizaje en el que se explora qué son los modelos de lenguaje grandes (LLM), sus casos de uso y cómo se puede utilizar el ajuste de instrucciones para mejorar el rendimiento de los LLM. También abarca las herramientas de Google para ayudarte a desarrollar tus propias aplicaciones de IA generativa.
Este es un curso introductorio de microaprendizaje destinado a explicar qué es la IA generativa, cómo se utiliza y en qué se diferencia de los métodos de aprendizaje automático tradicionales. También abarca las herramientas de Google para ayudarte a desarrollar tus propias aplicaciones de IA generativa.