가입 로그인

Akhmad Khudri

회원 가입일: 2025

다이아몬드 리그

41757포인트
Service Orchestration and Choreography on Google Cloud Earned 12월 30, 2025 EST
Developing Applications with Google Cloud: Foundations Earned 12월 28, 2025 EST
Google Cloud 기초: 핵심 인프라 Earned 12월 23, 2025 EST
AI Infrastructure: Deployment Types Earned 12월 17, 2025 EST
AI Infrastructure: Networking Techniques Earned 12월 17, 2025 EST
Conversational AI on Vertex AI and Dialogflow CX Earned 12월 16, 2025 EST
보안 엔지니어를 위한 Gemini Earned 12월 16, 2025 EST
클라우드 설계자를 위한 Gemini Earned 12월 16, 2025 EST
AI Infrastructure: Storage Options Earned 12월 16, 2025 EST
Vertex AI로 머신러닝 작업(MLOps): 모델 평가 Earned 12월 14, 2025 EST
Model Armor: 안전한 AI 배포 Earned 12월 14, 2025 EST
AI 보안 소개 Earned 12월 14, 2025 EST
필수 Google Cloud 인프라: 기초 Earned 12월 14, 2025 EST
생성형 AI 앱: 업무 혁신 Earned 12월 12, 2025 EST
생성형 AI: 환경 살펴보기 Earned 12월 12, 2025 EST
생성형 AI: 기본 개념 이해 Earned 12월 12, 2025 EST
생성형 AI: 챗봇 그 이상의 가치 Earned 12월 12, 2025 EST
AI Infrastructure: Cloud TPUs Earned 12월 10, 2025 EST
AI Infrastructure: Cloud GPUs Earned 12월 10, 2025 EST
AI Infrastructure: Introduction to AI Hypercomputer Earned 12월 10, 2025 EST
Chrome Enterprise Premium 보안으로 클라우드 트래픽 보호 Earned 12월 10, 2025 EST
Google Cloud에서 Machine Learning API 사용하기 Earned 12월 9, 2025 EST
Google Workspace 도구 시작하기 Earned 12월 8, 2025 EST
Deploy and Scale AI Models with Cloud Run Earned 12월 7, 2025 EST
Configure Gemini Code Assist for Organizations Earned 12월 7, 2025 EST
Accelerate App Development with Gemini CLI Earned 12월 7, 2025 EST
Gemini Code Assist로 앱 개발 간소화 Earned 12월 7, 2025 EST
개발자를 위한 책임감 있는 AI: 해석 가능성 및 투명성 Earned 12월 6, 2025 EST
개발자를 위한 책임감 있는 AI: 공정성 및 편향 Earned 12월 6, 2025 EST
개발자를 위한 책임감 있는 AI: 개인 정보 보호 및 안전 Earned 12월 6, 2025 EST
벡터 검색 및 임베딩 Earned 12월 6, 2025 EST
생성형 AI를 위한 머신러닝 작업(MLOps) Earned 12월 6, 2025 EST
Vertex AI Studio 소개 Earned 12월 6, 2025 EST
이미지 캡셔닝 모델 만들기 Earned 12월 6, 2025 EST
Transformer 모델 및 BERT 모델 Earned 12월 6, 2025 EST
인코더-디코더 아키텍처 Earned 12월 6, 2025 EST
어텐션 메커니즘 Earned 12월 6, 2025 EST
이미지 생성 소개 Earned 12월 6, 2025 EST
Vertex AI와 Flutter를 활용하여 생성형 AI 에이전트 빌드하기 Earned 12월 5, 2025 EST
Google Cloud에서 생성형 AI를 사용한 웹사이트 현대화 Earned 12월 4, 2025 EST
Google Cloud에서 생성형 AI 앱 만들기 Earned 12월 4, 2025 EST
스토리텔링의 힘: 클라우드에서 데이터를 시각화하는 방법 Earned 12월 3, 2025 EST
정리: Cloud 데이터 분석가 업무 준비 Earned 12월 3, 2025 EST
Data Transformation in the Cloud Earned 12월 3, 2025 EST
Trust and Security with Google Cloud Earned 12월 3, 2025 EST
Modernize Infrastructure and Applications with Google Cloud Earned 12월 3, 2025 EST
Innovating with Google Cloud Artificial Intelligence Earned 12월 3, 2025 EST
엔드 투 엔드 SDLC를 위한 Gemini Earned 12월 3, 2025 EST
Exploring Data Transformation with Google Cloud Earned 12월 3, 2025 EST
클라우드의 데이터 관리 및 스토리지 Earned 12월 3, 2025 EST
Google Cloud에서 ML API용으로 데이터 준비하기 Earned 12월 2, 2025 EST
안전한 Google Cloud 네트워크 빌드 Earned 12월 2, 2025 EST
Google Cloud 앱 개발 환경 설정 Earned 12월 2, 2025 EST
Compute Engine에서 Cloud Load Balancing 구현하기 Earned 12월 2, 2025 EST
Google Cloud 컴퓨팅 기초: Google Cloud의 데이터, 머신러닝, AI Earned 12월 2, 2025 EST
Google Cloud의 데이터 분석 입문 Earned 12월 2, 2025 EST
Digital Transformation with Google Cloud Earned 12월 2, 2025 EST
Gemini 멀티모달 및 멀티모달 RAG로 리치 문서 검사하기 Earned 12월 1, 2025 EST
Google Cloud에서 TensorFlow를 사용해 이미지 분류하기 Earned 12월 1, 2025 EST
BigLake 데이터의 메타데이터 및 검색 기능 강화 Earned 12월 1, 2025 EST
Dataplex로 데이터 메시 빌드하기 Earned 12월 1, 2025 EST
Google Cloud 컴퓨팅 기초: Google Cloud의 네트워킹 및 보안 Earned 12월 1, 2025 EST
Google Cloud 컴퓨팅 기초: Google Cloud의 인프라 Earned 11월 30, 2025 EST
Google Cloud 컴퓨팅 기초: 클라우드 컴퓨팅 기초 Earned 11월 30, 2025 EST
Scaling with Google Cloud Operations Earned 11월 29, 2025 EST
애플리케이션 개발자를 위한 Gemini Earned 11월 29, 2025 EST
종합해 보기: 클라우드 보안 분석가 업무 준비 Earned 11월 28, 2025 EST
Cloud에서 사이버 보안 공격 탐지, 대응, 복구 Earned 11월 27, 2025 EST
클라우드 보안 위험: 위협에 대한 식별 및 보호 Earned 11월 27, 2025 EST
클라우드 보안 위험 관리 전략 Earned 11월 27, 2025 EST
클라우드 컴퓨팅의 보안 원칙 소개 Earned 11월 26, 2025 EST
AI Boost Bites: Tame Your Inbox with AI Earned 11월 26, 2025 EST
AI Boost Bites: AI Power-Ups for Google Workspace Earned 11월 26, 2025 EST
AI Boost Bites: Your Personal Feedback Agent Earned 11월 26, 2025 EST
Eventarc 시작하기 Earned 11월 19, 2025 EST
Google Cloud에 CI/CD 파이프라인 구현하기 Earned 11월 19, 2025 EST
Google Cloud에서 Terraform으로 인프라 빌드 Earned 11월 19, 2025 EST
Gemini 및 Streamlit으로 생성형 AI 앱 개발하기 Earned 11월 18, 2025 EST
Security Command Center로 위협과 취약점 완화하기 Earned 11월 18, 2025 EST
Google Cloud에서 Kubernetes 관리 Earned 11월 18, 2025 EST
BigQuery ML로 ML 모델 만들기 Earned 11월 18, 2025 EST
생성형 AI 에이전트: 조직 혁신 Earned 11월 18, 2025 EST
BigQuery의 Gemini로 생산성 향상 Earned 11월 17, 2025 EST
BigQuery에서 Gemini 모델 사용하기 Earned 11월 17, 2025 EST
BigQuery 머신러닝을 사용한 추론 Earned 11월 16, 2025 EST
데이터 과학자와 분석가를 위한 Gemini Earned 11월 16, 2025 EST
Vertex AI의 프롬프트 설계 Earned 11월 15, 2025 EST
책임감 있는 AI: Google Cloud를 통한 AI 원칙 적용하기 Earned 11월 15, 2025 EST
책임감 있는 AI 소개 Earned 11월 15, 2025 EST
대규모 언어 모델 소개 Earned 11월 15, 2025 EST
생성형 AI 소개 Earned 11월 15, 2025 EST

This course introduces you to event-based applications and teaches you how to use service orchestration and choreography to coordinate microservices. Using lectures and hands-on labs, you learn how to use Workflows, Eventarc, Cloud Tasks, and Cloud Scheduler to build microservices applications on Google Cloud.

자세히 알아보기

In this course, you learn the fundamentals of application development on Google Cloud. You learn best practices for cloud applications, and how to select compute and data options to match your application use cases. You're introduced to generative AI and how it's used to help build applications. You learn about authentication and authorization, application deployment, continuous integration and delivery, and monitoring and performance tuning for your applications running in Google Cloud. Using lectures and hands-on labs, you learn how to get started building and running applications on Google Cloud.

자세히 알아보기

Google Cloud 기초: 핵심 인프라 과정은 Google Cloud 사용에 관한 중요한 개념 및 용어를 소개합니다. 이 과정에서는 동영상 및 실무형 실습을 통해 중요한 리소스 및 정책 관리 도구와 함께 Google Cloud의 다양한 컴퓨팅 및 스토리지 서비스를 살펴보고 비교합니다.

자세히 알아보기

This course provides a comprehensive guide to deploying, managing, and optimizing AI and high-performance computing (HPC) workloads on Google Cloud. Through a series of lessons and practical demonstrations, you’ll explore diverse deployment strategies, ranging from highly customizable environments using Google Compute Engine (GCE) to managed solutions like Google Kubernetes Engine (GKE). Specifically, you’ll learn how to create clusters and deploy GKE for inference.

자세히 알아보기

Welcome to the "AI Infrastructure: Networking Techniques" course. In this course, you'll learn to leverage Google Cloud's high-bandwidth, low-latency infrastructure to optimize data transfer and communication between all the components of your AI system. By the end, you'll grasp the critical role networking plays across the entire AI pipeline from data ingestion and training to inference and be able to apply best practices to ensure your workloads run at maximum speed.

자세히 알아보기

In this course you will learn how to use the new generative AI features in Dialogflow CX to create virtual agents that can have more natural and engaging conversations with customers. Discover how to deploy generative fallback responses to gracefully handle errors and omissions in customer conversations, deploy generators to increase intent coverage, and structure, ingest, and manage data in a data store. And explore how to deploy and maintain generative AI agents using your data, and deploy and maintain hybrid agents in combination with existing intent-based design paradigms.

자세히 알아보기

이 과정에서는 Google Cloud의 생성형 AI 기반 파트너인 도구인 Gemini가 클라우드 환경 및 리소스 보호에 어떤 도움이 되는지 알아봅니다. Google Cloud의 환경에 예시 워크로드를 배포하고, Gemini를 이용해 잘못된 보안 구성을 확인 및 해결하는 방법을 배웁니다. 실무형 실습을 통해 Gemini가 클라우드 보안 상황을 어떻게 개선하는지 경험할 수 있습니다. Duet AI의 이름이 Google의 차세대 모델인 Gemini로 변경되었습니다.

자세히 알아보기

이 과정에서는 Google Cloud의 생성형 AI 기반 도우미인 Gemini가 관리자의 인프라 프로비저닝을 어떻게 도와주는지 알아봅니다. 인프라에 관해 설명하고, GKE 클러스터를 배포하고, 기존 인프라를 업데이트하도록 Gemini에 프롬프트를 입력하는 방법을 배울 수 있습니다. 또한 실무형 실습을 통해 Gemini가 GKE 배포 워크플로를 어떻게 개선하는지 경험할 수 있습니다. Duet AI의 이름이 Google의 차세대 모델인 Gemini로 변경되었습니다.

자세히 알아보기

In this course, you’ll take a comprehensive journey through the storage solutions available on Google Cloud, specifically tailored for AI and high-performance computing (HPC) workloads. You’ll learn how to choose the right storage for each stage of the ML lifecycle. You’ll explore how to optimize for I/O performance during training, manage massive datasets for data preparation, and serve model artifacts with low latency. Through practical examples and demonstrations, you’ll gain the expertise to design robust storage solutions that accelerate your AI innovation.

자세히 알아보기

이 과정은 머신러닝 실무자에게 생성형 AI 모델과 예측형 AI 모델을 평가하는 데 필요한 도구, 기술, 권장사항을 제공합니다. 모델 평가는 프로덕션 단계의 ML 시스템이 안정적이고 정확하고 성능이 우수한 결과를 제공할 수 있게 하는 중요한 분야입니다. 강의 참가자는 다양한 평가 측정항목, 방법, 각각 다른 모델 유형과 작업에 적합한 애플리케이션에 대해 깊이 있게 이해할 수 있습니다. 이 과정에서는 생성형 AI 모델의 고유한 문제를 강조하고 이를 효과적으로 해결하기 위한 전략을 소개합니다. 강의 참가자는 Google Cloud의 Vertex AI Platform을 활용해 모델 선택, 최적화, 지속적인 모니터링을 위한 견고한 평가 프로세스를 구현하는 방법을 알아볼 수 있습니다.

자세히 알아보기

이 과정에서는 Model Armor의 필수 보안 기능을 검토하고 서비스를 사용할 수 있도록 준비합니다. LLM과 관련된 보안 위험과 Model Armor가 AI 애플리케이션을 보호하는 방법을 알아봅니다.

자세히 알아보기

인공지능(AI)은 혁신적인 가능성을 제공하지만 새로운 보안 문제의 원인이 되기도 합니다. 이 과정에서는 보안 및 데이터 보호 리더가 조직 내에서 AI를 안전하게 관리하는 데 필요한 전략을 살펴봅니다. AI 관련 위험을 사전에 식별 및 완화하고, 민감한 정보를 보호하며, 규정을 준수하고, 복원력 높은 AI 인프라를 빌드하는 프레임워크를 학습합니다. 이러한 전략이 실제 시나리오에서 어떻게 적용되는지 살펴보기 위해 4가지 산업별 사례를 선별했습니다.

자세히 알아보기

이 속성 주문형 과정은 참가자에게 Google Cloud에서 제공하는 포괄적이고 유연한 인프라 및 플랫폼 서비스를 Compute Engine을 중심으로 소개합니다. 참가자는 동영상 강의, 데모, 실무형 실습을 통해 네트워크, 가상 머신, 애플리케이션 서비스와 같은 인프라 구성요소를 포함한 솔루션 요소를 탐색하고 배포해 볼 수 있습니다. Console과 Cloud Shell을 통해 Google Cloud를 사용하는 방법을 학습합니다. 또한 클라우드 설계자의 역할, 인프라 설계 접근 방식은 물론 Virtual Private Cloud(VPC), 프로젝트, 네트워크, 서브네트워크, IP 주소, 경로, 방화벽 규칙을 사용한 가상 네트워킹 구성에 대해 알아봅니다.

자세히 알아보기

'생성형 AI 앱: 업무 혁신'은 생성형 AI 리더 학습 과정의 네 번째 과정입니다. 이 과정에서는 Workspace를 위한 Gemini, NotebookLM 등 Google의 생성형 AI 애플리케이션을 소개합니다. 그라운딩, 검색 증강 생성, 효과적인 프롬프트 작성, 자동화된 워크플로 구축 등의 개념을 안내합니다.

자세히 알아보기

'생성형 AI: 환경 살펴보기'는 생성형 AI 리더 학습 과정의 세 번째 과정입니다. 생성형 AI는 업무 방식을 비롯해 주변 세계와 상호작용하는 방식에 변화를 일으키고 있습니다. 리더로서 생성형 AI를 활용하여 실질적인 비즈니스 성과를 얻으려면 어떻게 해야 할까요? 이 과정에서는 생성형 AI 솔루션 빌드의 다양한 계층, Google Cloud 제품, 솔루션을 선택할 때 고려해야 할 요소를 살펴봅니다.

자세히 알아보기

'생성형 AI: 기본 개념 이해'는 생성형 AI 리더 학습 과정의 두 번째 과정입니다. 이 과정에서는 생성형 AI의 기본 개념을 이해하기 위해 AI, ML, 생성형 AI의 차이점을 살펴보고 다양한 데이터 유형에서 생성형 AI로 어떻게 비즈니스 과제를 해결할 수 있는지 알아봅니다. 파운데이션 모델의 제한사항과 책임감 있고 안전한 AI 개발 및 배포의 주요 과제를 해결할 수 있도록 Google Cloud 전략에 관한 인사이트도 제공합니다.

자세히 알아보기

'생성형 AI: 챗봇 그 이상의 가치'는 생성형 AI 리더 학습 과정의 첫 번째 과정이며 요구되는 기본 요건이 없습니다. 이 과정은 챗봇에 대한 기본적인 이해를 넘어 조직을 위한 생성형 AI의 진정한 잠재력을 살펴보는 것을 목표로 합니다. 생성형 AI의 강력한 기능을 활용하는 데 중요한 파운데이션 모델 및 프롬프트 엔지니어링과 같은 개념을 살펴봅니다. 또한 조직을 위한 성공적인 생성형 AI 전략을 개발할 때 고려해야 할 중요한 사항도 안내합니다.

자세히 알아보기

Welcome to the Cloud TPUs course. We'll explore the advantages and disadvantages of TPUs in various scenarios and compare different TPU accelerators to help you choose the right fit. You'll learn strategies to maximize performance and efficiency for your AI models and understand the significance of GPU/TPU interoperability for flexible machine learning workflows. Through engaging content and practical demos, we'll guide you step-by-step in leveraging TPUs effectively.

자세히 알아보기

Curious about the powerful hardware behind AI? This course breaks down performance-optimized AI computers, showing you why they're so important. We'll explore how CPUs, GPUs, and TPUs make AI tasks super fast, what makes each one unique, and how AI software gets the most out of them. By the end, you'll know exactly how to pick the right compute for your AI projects, helping you make smart choices for your AI workkoads.

자세히 알아보기

Ready to get started with AI Hypercomputers? This course makes it easy! We'll cover the basics of what they are and how they help AI with AI workloads. You'll learn about the different components inside a hypercomputer, like GPUs, TPUs, and CPUs, and discover how to pick the right deployment approach for your needs.

자세히 알아보기

Chrome Enterprise Premium 보안으로 클라우드 트래픽 보호 기술 배지 과정을 완료하여 기술 배지를 획득하세요. 이 과정에서는 Chrome Enterprise Premium을 활용하여 중요한 앱 및 서비스에 대한 보안 액세스를 제공하고, 최신 제로 트러스트 플랫폼으로 보안 상황을 개선하고, ID 및 컨텍스트 인식 액세스 제어를 사용하여 리소스에 대한 액세스를 안전하게 제공하고, 클라이언트 커넥터를 사용하여 하이브리드 클라우드 워크로드를 지원하는 방법을 알아봅니다.

자세히 알아보기

Google Cloud에서 Machine Learning API 사용하기 과정을 완료하여 고급 기술 배지를 획득하세요. 이 과정에서는 Cloud Vision API, Cloud Translation API, Cloud Natural Language API와 같은 머신러닝 및 AI 기술의 기본 기능을 알아봅니다.

자세히 알아보기

Google Workspace 도구 시작하기 과정을 완료하고 초급 기술 배지를 획득하세요. 이 과정에서는 Google의 협업 플랫폼에 대해 소개하고, Gmail, Calendar, Meet, Drive, Sheets, AppSheet를 사용하는 방법을 알아봅니다.

자세히 알아보기

AI inference is the process of using a trained machine learning model to make predictions on new, unseen data by applying learned patterns. This course is designed for developers, data scientists, and ML engineers interested in quickly deploying AI inference services on Cloud Run. It is useful for those familiar with cloud-based serverless application deployment solutions, but who may not have experience with running AI inference using Google Cloud serverless products. The course includes examples that deploys a model for AI inference with GPUs and integrates gen AI apps with data storage services.

자세히 알아보기

This course is designed for Google Cloud developers and DevOps engineers who have basic knowledge of the Google Cloud console and are responsible for configuring Gemini Code Assist for an organization. The course introduces the benefits of Gemini Code Assist and compares the features of the different Gemini Code Assist editions. The course also shows you how to configure and manage Gemini Code Assist within an organization.

자세히 알아보기

This course is designed for app developers and DevOps engineers who want to work smarter by using Gemini CLI, a generative AI agent made for the terminal and powered by Gemini. This course discusses Gemini CLI installation and configuration, and introduces use cases and security best practices. It explains commands, tools, MCP servers, and extensions. With a hands-on exercise, you'll install and configure Gemini CLI and use it to analyze code and build and modify an app.

자세히 알아보기

모든 수준의 개발자를 위해 설계된 이 과정에서는 Google Cloud의 AI 기반 앱 개발 파트너인 Gemini Code Assist의 핵심 기능을 소개합니다. 지능형 코드 추천 및 자동 완성부터 실시간 오류 감지 및 리팩터링 지원까지, Gemini Code Assist가 어떻게 생산성을 대폭 높이고, 코드 품질을 개선하며, 더 생산적이고 흥미로운 작업에 집중할 수 있도록 소중한 시간을 절약해 주는지 알아보세요.

자세히 알아보기

이 과정에서는 AI 해석 가능성과 투명성의 개념을 소개합니다. 개발자와 엔지니어에게 AI 투명성이 얼마나 중요한지를 설명합니다. 데이터와 AI 모델 모두에서 해석 가능성과 투명성을 구현하는 데 도움이 되는 실용적인 방법과 도구를 살펴봅니다.

자세히 알아보기

이 과정에서는 책임감 있는 AI라는 개념과 AI 원칙을 소개합니다. 공정성과 편향을 실질적으로 식별하고 AI/ML 실무에서 편향을 완화하는 기법을 알아봅니다. Google Cloud 제품과 오픈소스 도구를 사용하여 책임감 있는 AI 권장사항을 구현하는 실용적인 방법과 도구를 살펴봅니다.

자세히 알아보기

이 과정에서는 AI 개인 정보 보호 및 안전에 관한 중요한 주제를 소개합니다. Google Cloud 제품과 오픈소스 도구를 사용하여 AI 개인 정보 보호 및 안전 권장사항을 구현하는 실용적인 방법과 도구를 살펴봅니다.

자세히 알아보기

이 과정에서는 AI 기반 검색 기술, 도구, 애플리케이션을 살펴봅니다. 벡터 임베딩을 활용하는 시맨틱 검색, 시맨틱 방식과 키워드 방식을 결합한 하이브리드 검색, 그라운딩된 AI 에이전트로서 AI 할루시네이션을 최소화하는 검색 증강 생성(RAG)에 대해 알아보세요. Vertex AI 벡터 검색을 활용해 지능형 검색 엔진을 빌드하는 실무 경험을 쌓을 수 있습니다.

자세히 알아보기

이 과정에서는 생성형 AI 모델을 배포하고 관리할 때 MLOps팀이 직면하는 고유한 과제를 파악하는 데 필요한 지식과 도구를 제공하고 Vertex AI가 어떻게 AI팀이 MLOps 프로세스를 간소화하고 생성형 AI 프로젝트에서 성공을 거둘 수 있도록 지원하는지 살펴봅니다.

자세히 알아보기

이 과정에서는 생성형 AI 모델과 상호작용하고 비즈니스 아이디어의 프로토타입을 제작하여 프로덕션으로 출시할 수 있는 도구인 Vertex AI Studio를 소개합니다. 몰입감 있는 사용 사례, 흥미로운 강의, 실무형 실습을 통해 프롬프트부터 프로덕션에 이르는 수명 주기를 살펴보고 Vertex AI Studio를 Gemini 멀티모달 애플리케이션, 프롬프트 설계, 프롬프트 엔지니어링, 모델 조정에 활용하는 방법을 알아봅니다. 이 과정의 목표는 Vertex AI Studio로 프로젝트에서 생성형 AI의 잠재력을 활용하는 것입니다.

자세히 알아보기

이 과정에서는 딥 러닝을 사용해 이미지 캡션 모델을 만드는 방법을 알아봅니다. 인코더 및 디코더와 모델 학습 및 평가 방법 등 이미지 캡션 모델의 다양한 구성요소에 대해 알아봅니다. 이 과정을 마치면 자체 이미지 캡션 모델을 만들고 이를 사용해 이미지의 설명을 생성할 수 있게 됩니다.

자세히 알아보기

이 과정은 Transformer 아키텍처와 BERT(Bidirectional Encoder Representations from Transformers) 모델을 소개합니다. 셀프 어텐션 메커니즘 같은 Transformer 아키텍처의 주요 구성요소와 이 아키텍처가 BERT 모델 빌드에 사용되는 방식에 관해 알아봅니다. 또한 텍스트 분류, 질문 답변, 자연어 추론과 같이 BERT를 활용할 수 있는 다양한 작업에 대해서도 알아봅니다. 이 과정은 완료하는 데 대략 45분이 소요됩니다.

자세히 알아보기

이 과정은 기계 번역, 텍스트 요약, 질의 응답과 같은 시퀀스-투-시퀀스(Seq2Seq) 작업에 널리 사용되는 강력한 머신러닝 아키텍처인 인코더-디코더 아키텍처에 대한 개요를 제공합니다. 인코더-디코더 아키텍처의 기본 구성요소와 이러한 모델의 학습 및 서빙 방법에 대해 알아봅니다. 해당하는 실습 둘러보기에서는 TensorFlow에서 시를 짓는 인코더-디코더 아키텍처를 처음부터 간단하게 구현하는 코딩을 해봅니다.

자세히 알아보기

이 과정에서는 신경망이 입력 시퀀스의 특정 부분에 집중할 수 있도록 하는 강력한 기술인 주목 메커니즘을 소개합니다. 주목 메커니즘의 작동 방식과 이 메커니즘을 다양한 머신러닝 작업(기계 번역, 텍스트 요약, 질문 답변 등)의 성능을 개선하는 데 활용하는 방법을 알아봅니다.

자세히 알아보기

이 과정에서는 최근 이미지 생성 분야에서 가능성을 보여준 머신러닝 모델 제품군인 확산 모델을 소개합니다. 확산 모델은 열역학을 비롯한 물리학에서 착안했습니다. 지난 몇 년 동안 확산 모델은 연구계와 업계 모두에서 주목을 받았습니다. 확산 모델은 Google Cloud의 다양한 최신 이미지 생성 모델과 도구를 뒷받침합니다. 이 과정에서는 확산 모델의 이론과 Vertex AI에서 이 모델을 학습시키고 배포하는 방법을 소개합니다.

자세히 알아보기

이 과정에서는 Google의 이식 가능한 UI 툴킷인 Flutter를 사용하여 앱을 개발하고, 앱에 Google의 생성형 AI 모델 제품군인 Gemini를 통합하는 방법을 알아봅니다. AI 에이전트와 애플리케이션을 빌드하고 관리할 수 있는 Google 플랫폼인 Vertex AI Agent Builder도 사용해 봅니다.

자세히 알아보기

생성형 AI로 사용자에게 더 나은 검색 경험을 제공하여 웹사이트의 탐색 경험을 향상합니다. 이 과정에서는 사용자가 웹사이트의 콘텐츠를 발견할 수 있도록 Vertex AI Search를 통해 생성형 검색 경험을 웹사이트 사용자에게 제공하는 방법을 알아봅니다. 웹사이트 편집자는 생성형 AI를 사용하여 제안을 통해 콘텐츠를 신속하고 효율적으로 번역하고 개선하는 방법을 배울 수 있습니다.

자세히 알아보기

생성형 AI 애플리케이션은 대규모 언어 모델(LLM)이 발명되기 전에는 불가능에 가까웠던 새로운 사용자 경험을 만들 수 있습니다. 어떻게 하면 애플리케이션 개발자가 생성형 AI를 사용해 Google Cloud에서 강력한 대화형 앱을 빌드할 수 있을까요? 이 과정에서는 생성형 AI 애플리케이션에 대해 알아보고 프롬프트 설계 및 검색 증강 생성(RAG)을 사용해 LLM 기반의 강력한 애플리케이션을 빌드하는 방법을 학습합니다. 생성형 AI 애플리케이션에 사용할 수 있는 프로덕션 레디 아키텍처를 살펴보고 LLM 및 RAG 기반 채팅 애플리케이션을 빌드합니다.

자세히 알아보기

Google Cloud 데이터 애널리틱스 자격증의 5개 과정 중 네 번째 과정입니다. 이 과정에서 학습자는 클라우드에서 데이터를 시각화하는 5가지 핵심 단계(스토리텔링, 계획, 데이터 탐색, 시각화 구축, 다른 사람과의 데이터 공유)와 관련된 기술을 개발하는 데 중점을 둡니다. 또한 UI/UX 기술을 사용하여 효과적인 클라우드 네이티브 시각화를 와이어프레임으로 제작하고 클라우드 네이티브 데이터 시각화 도구를 사용하여 데이터 세트를 탐색하고, 보고서를 작성할 뿐 아니라 의사 결정 및 협업을 촉진하는 대시보드를 빌드하는 경험을 쌓을 수 있습니다.

자세히 알아보기

Google Cloud 데이터 애널리틱스 자격증의 5개 과정 중 다섯 번째 과정입니다. 이 과정에서는 전체 데이터 수명 주기 프로젝트에 중점을 둔 실습형 캡스톤 프로젝트의 1~4번째 과정에서 배운 기초 지식과 기술을 종합하여 적용합니다. 클라우드 기반 도구를 사용하여 데이터 인사이트를 효과적으로 확보, 저장, 처리, 분석, 시각화, 전달하는 방법을 실습합니다. 과정을 마치면 학습자는 여러 소스의 데이터를 효과적으로 구조화하고, 다양한 이해관계자에게 솔루션을 제시하고, 클라우드 기반 소프트웨어를 사용하여 데이터 인사이트를 시각화하는 역량을 보여주는 프로젝트를 완료하게 됩니다. 또한 이력서를 업데이트하고 면접 기법을 연습하면서 입사 지원 및 면접을 준비합니다.

자세히 알아보기

This is the third of five courses in the Google Cloud Data Analytics Certificate. In this course, you’ll begin by getting an overview of the data journey, from collection to insights. You’ll then learn how to use SQL to transform raw data into a usable format. Next, you’ll learn how to transform high volumes of data with a data pipeline. Finally, you’ll gain experience applying transformation strategies to real data sets to solve business needs.

자세히 알아보기

As organizations move their data and applications to the cloud, they must address new security challenges. The Trust and Security with Google Cloud course explores the basics of cloud security, the value of Google Cloud's multilayered approach to infrastructure security, and how Google earns and maintains customer trust in the cloud. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.

자세히 알아보기

Many traditional enterprises use legacy systems and applications that can't stay up-to-date with modern customer expectations. Business leaders often have to choose between maintaining their aging IT systems or investing in new products and services. "Modernize Infrastructure and Applications with Google Cloud" explores these challenges and offers solutions to overcome them by using cloud technology. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.

자세히 알아보기

Artificial intelligence (AI) and machine learning (ML) represent an important evolution in information technologies that are quickly transforming a wide range of industries. “Innovating with Google Cloud Artificial Intelligence” explores how organizations can use AI and ML to transform their business processes. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.

자세히 알아보기

이 과정에서는 Google Cloud의 생성형 AI 기반 파트너인 Gemini가 Google 제품 및 서비스를 사용해 애플리케이션을 개발, 테스트, 배포, 관리하는 데 어떤 도움이 되는지 알아봅니다. Gemini의 도움을 받아 웹 애플리케이션을 개발 및 빌드하고, 애플리케이션의 오류를 수정하고, 테스트를 개발하고, 데이터를 쿼리하는 방법을 배웁니다. 실무형 실습을 통해 Gemini로 소프트웨어 개발 수명 주기(SDLC)가 얼마나 개선되는지 경험할 수 있습니다. Duet AI의 이름이 Google의 차세대 모델인 Gemini로 변경되었습니다.

자세히 알아보기

Cloud technology can bring great value to an organization, and combining the power of cloud technology with data has the potential to unlock even more value and create new customer experiences. “Exploring Data Transformation with Google Cloud” explores the value data can bring to an organization and ways Google Cloud can make data useful and accessible. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.

자세히 알아보기

Google Cloud 데이터 애널리틱스 자격증의 5개 과정 중 두 번째 과정입니다. 이 과정에서는 데이터를 어떻게 구조화하고 조직화하는지 살펴봅니다. 데이터 레이크하우스 아키텍처 및 BigQuery, Google Cloud Storage, Dataproc과 같은 클라우드 구성요소를 활용하여 대규모 데이터 세트를 효율적으로 저장, 분석, 처리하는 방법을 직접 경험해 봅니다.

자세히 알아보기

초급 Google Cloud에서 ML API용으로 데이터 준비하기 기술 배지를 완료하여 Dataprep by Trifacta로 데이터 정리, Dataflow에서 데이터 파이프라인 실행, Dataproc에서 클러스터 생성 및 Apache Spark 작업 실행, Cloud Natural Language API, Google Cloud Speech-to-Text API, Video Intelligence API를 포함한 ML API 호출과 관련된 기술 역량을 입증하세요.

자세히 알아보기

안전한 Google Cloud 네트워크 빌드 과정을 완료하여 기술 배지를 획득하세요. 이 과정에서는 Google Cloud에서 애플리케이션을 빌드, 확장, 보호하는 데 필요한 다양한 네트워킹 관련 리소스에 대해 배울 수 있습니다.

자세히 알아보기

Google Cloud 앱 개발 환경 설정 과정을 완료하여 기술 배지를 획득하세요. Cloud Storage, Identity and Access Management, Cloud Functions, Pub/Sub의 기본 기능을 사용하여 스토리지 중심 클라우드 인프라를 구축하고 연결하는 방법을 배울 수 있습니다.

자세히 알아보기

초급 Compute Engine에서 Cloud Load Balancing 구현하기 기술 배지 과정을 완료하여 Compute Engine에서 가상 머신 만들기 및 배포, 네트워크 및 애플리케이션 부하 분산기 구성과 관련된 기술 역량을 입증하세요.

자세히 알아보기

Google Cloud 컴퓨팅 기초 과정은 클라우드 컴퓨팅에 대한 배경지식 또는 경험이 거의 없는 개인을 대상으로 합니다. 이 과정은 클라우드 기본사항, 빅데이터, 머신러닝에 대한 핵심 개념을 간략히 설명하고 Google Cloud의 적용 위치 및 방식에 대한 개요를 제공합니다. 일련의 과정을 마친 학습자는 이러한 개념을 명확하게 설명하고 몇 가지 실무 기술 역량을 입증할 수 있게 됩니다. 과정은 다음 순서대로 완료해야 합니다. 1. Google Cloud 컴퓨팅 기초: 클라우드 컴퓨팅 기초 2. Google Cloud 컴퓨팅 기초: Google Cloud의 인프라 3. Google Cloud 컴퓨팅 기초: Google Cloud의 네트워킹 및 보안 4. Google Cloud 컴퓨팅 기초: Google Cloud의 데이터, 머신러닝, AI 이 시리즈의 마지막 과정에서는 관리형 빅데이터 서비스, 머신러닝과 그 가치를 복습하고 기술 배지를 획득하여 Google Cloud 기술 역량을 추가로 입증하는 방법을 살펴봅니다.

자세히 알아보기

Google Cloud 데이터 애널리틱스 자격증의 5개 과정 중 첫 번째 과정입니다. 이 과정에서는 클라우드 데이터 분석의 분야를 정의하고 데이터 획득, 저장, 처리, 시각화와 관련된 클라우드 데이터 분석가의 역할과 책임을 설명합니다. BigQuery, Cloud Storage와 같은 Google Cloud 기반 도구의 아키텍처와 이러한 도구를 사용하여 데이터를 효과적으로 구조화하여 표시하고 보고하는 방법을 살펴봅니다.

자세히 알아보기

There's much excitement about cloud technology and digital transformation, but often many unanswered questions. For example: What is cloud technology? What does digital transformation mean? How can cloud technology help your organization? Where do you even begin? If you've asked yourself any of these questions, you're in the right place. This course provides an overview of the types of opportunities and challenges that companies often encounter in their digital transformation journey. If you want to learn about cloud technology so you can excel in your role and help build the future of your business, then this introductory course on digital transformation is for you. This course is part of the Cloud Digital Leader learning path.

자세히 알아보기

중급 Gemini 멀티모달 및 멀티모달 RAG로 리치 문서 검사하기 기술 배지 과정을 완료하여 다음 기술 역량을 입증하세요. 멀티모달 프롬프트를 사용하여 텍스트 및 시각적 데이터에서 정보 추출, 동영상 설명 생성, Gemini의 멀티모달 기능을 사용하여 동영상은 물론 그 밖의 추가 정보 검색, 텍스트와 이미지가 포함된 문서의 메타데이터 구축, 모든 관련 텍스트 청크 가져오기, Gemini의 멀티모달 검색 증강 생성(RAG)을 사용하여 인용 문구 인쇄 등이 있습니다.

자세히 알아보기

중급 Google Cloud에서 TensorFlow를 사용해 이미지 분류하기 과정을 완료하고 기술 배지를 획득하세요. 이 기술 배지 과정에서는 TensorFlow와 Vertex AI를 사용하여 머신러닝 모델을 만들고 학습시키는 방법을 배웁니다. 주로 Vertex AI Workbench 사용자 관리 노트북과 상호작용합니다.

자세히 알아보기

BigLake 데이터의 메타데이터 및 검색 기능 강화 기술 배지 과정을 완료하여 BigQuery, BigLake, Dataplex Universal Catalog에 대한 기술 역량을 입증하세요. BigLake 테이블을 만들고 테이블 데이터의 메타데이터 관리 및 검색을 강화합니다.

자세히 알아보기

초급 Dataplex로 데이터 메시 빌드하기 기술 배지 과정을 완료하여, Dataplex를 통해 데이터 메시를 빌드해 Google Cloud에서 데이터 보안, 거버넌스, 탐색을 활용하는 역량을 입증하세요. Dataplex에서 애셋에 태그를 지정하고, IAM 역할을 할당하고, 데이터 품질을 평가하는 기술을 연습하고 테스트할 수 있습니다.

자세히 알아보기

Google Cloud 컴퓨팅 기초 과정은 클라우드 컴퓨팅에 대한 배경 지식 또는 경험이 거의 없는 개인을 대상으로 합니다. 이 과정은 클라우드 기본사항, 빅데이터, 머신러닝에 대한 핵심 개념을 간략히 설명하고 Google Cloud의 적용 위치 및 방식에 대한 개요를 제공합니다. 일련의 과정을 마친 학습자는 이러한 개념을 명확하게 설명하고 몇 가지 실무 기술 역량을 입증할 수 있게 됩니다. 다음 순서대로 과정을 완료해야 합니다. 1. Google Cloud 컴퓨팅 기초: 클라우드 컴퓨팅 기초 2. Google Cloud 컴퓨팅 기초: Google Cloud의 인프라 3. Google Cloud 컴퓨팅 기초: Google Cloud의 네트워킹 및 보안 4. Google 클라우드 컴퓨팅 기초: Google Cloud의 데이터, 머신러닝, AI 이 세 번째 과정에서는 클라우드 자동화 및 관리 도구와 안전한 네트워크 구축에 대해 다룹니다.

자세히 알아보기

Google Cloud 컴퓨팅 기초 과정은 클라우드 컴퓨팅에 대한 배경지식 또는 경험이 거의 없는 개인을 대상으로 합니다. 이 과정은 클라우드 기본사항, 빅데이터, 머신러닝에 대한 핵심 개념을 간략히 설명하고 Google Cloud의 적용 위치 및 방식에 대한 개요를 제공합니다. 일련의 과정을 마친 학습자는 이러한 개념을 명확하게 설명하고 몇 가지 실무 기술 역량을 입증할 수 있게 됩니다. 과정은 다음 순서대로 완료해야 합니다. 1. Google Cloud 컴퓨팅 기초: 클라우드 컴퓨팅 기초 2. Google Cloud 컴퓨팅 기초: Google Cloud의 인프라 3. Google Cloud 컴퓨팅 기초: Google Cloud의 네트워킹 및 보안 4. Google Cloud 컴퓨팅 기초: Google Cloud의 데이터, 머신러닝, AI

자세히 알아보기

Google Cloud 컴퓨팅 기초 과정은 클라우드 컴퓨팅에 대한 배경지식 또는 경험이 거의 없는 개인을 대상으로 합니다. 이 과정은 클라우드 기본사항, 빅데이터, 머신러닝에 대한 핵심 개념을 간략히 설명하고 Google Cloud의 적용 위치 및 방식에 대한 개요를 제공합니다. 일련의 과정을 마친 학습자는 이러한 개념을 명확하게 설명하고 몇 가지 실무 기술 역량을 입증할 수 있게 됩니다. 과정은 다음 순서대로 완료해야 합니다. 1. Google Cloud 컴퓨팅 기초: 클라우드 컴퓨팅 기초 2. Google Cloud 컴퓨팅 기초: Google Cloud의 인프라 3. Google Cloud 컴퓨팅 기초: Google Cloud의 네트워킹 및 보안 4. Google Cloud 컴퓨팅 기초: Google Cloud의 데이터, 머신러닝, AI 첫 번째 과정에서는 클라우드 컴퓨팅, Google Cloud 사용 방법, 다양한 컴퓨팅 옵션에 대한 개요를 제공합니다.

자세히 알아보기

Organizations of all sizes are embracing the power and flexibility of the cloud to transform how they operate. However, managing and scaling cloud resources effectively can be a complex task. Scaling with Google Cloud Operations explores the fundamental concepts of modern operations, reliability, and resilience in the cloud, and how Google Cloud can help support these efforts. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.

자세히 알아보기

이 과정에서는 Google Cloud의 생성형 AI 기반 공동작업 도구인 Gemini가 개발자의 애플리케이션 빌드에 어떤 도움이 되는지 알아봅니다. Gemini에 프롬프트를 입력하여 코드에 대한 설명을 얻고 Google Cloud 서비스를 추천받고 애플리케이션의 코드를 생성하는 방법을 배울 수 있습니다. 실무형 실습을 통해 Gemini로 애플리케이션 개발 워크플로가 얼마나 개선되는지 경험할 수 있습니다. Duet AI의 이름이 Google의 차세대 모델인 Gemini로 변경되었습니다.

자세히 알아보기

Google Cloud 사이버 보안 자격증의 5개 과정 중 다섯 번째 과정입니다. 이 과정에서는 클라우드 보안 원칙, 위험 관리, 취약점 식별, 이슈 관리, 위기 커뮤니케이션과 같은 주요 개념을 결합하여 대화형 캡스톤 프로젝트로 적용합니다. 또한 이력서 업데이트를 마무리하고 새로 배운 모든 면접 기법을 실습하여 해당 분야의 일자리에 자신 있게 지원하고 면접을 볼 수 있도록 준비할 수 있습니다.

자세히 알아보기

Google Cloud 사이버 보안 수료증의 5개 과정 중 네 번째 과정입니다. 이 과정에서는 공격 완화 기법과 함께 로깅, 보안, 알림 모니터링 기능을 개발하는 데 중점을 둡니다. 위협 피드 맞춤설정, 사고 관리, 위기 커뮤니케이션 처리, 근본 원인 분석 수행, 사고 대응 및 사후 커뮤니케이션 방법 숙지에 관한 귀중한 지식을 얻을 수 있습니다. Google Cloud 도구를 사용하여 보안 침해 지표를 식별하고 비즈니스 연속성 및 재해 복구를 준비하는 방법을 알아보세요. 기술 역량을 높이면서 이력서를 계속 업데이트하고 면접 기법을 연습하겠습니다.

자세히 알아보기

Google Cloud 사이버 보안 수료증의 5개 과정 중 세 번째 과정입니다. 이 과정에서는 클라우드 환경의 ID 관리 및 액세스 제어 원칙을 살펴보고 AAA(인증, 승인, 감사), 사용자 인증 정보 처리, 인증서 관리와 같은 핵심 요소를 다룹니다. 또한 위협 및 취약점 관리, 클라우드 네이티브 원칙, 데이터 보호 조치와 같은 필수 주제도 살펴봅니다. 이 과정을 수료한 학습자는 클라우드 기반 리소스를 보호하고 민감한 조직 정보를 보호하는 데 필요한 기술과 지식을 갖추게 됩니다. 또한 경력 개발 리소스를 계속 활용하고 면접 기법을 연마하여 전문가 여정의 다음 단계를 준비할 수 있습니다.

자세히 알아보기

Google Cloud 사이버 보안 수료증의 5개 과정 중 두 번째 과정입니다. 이 과정에서는 널리 사용되는 클라우드 위험 관리 프레임워크를 살펴보고 보안 도메인, 규정 준수 수명 주기, HIPAA, NIST CSF, SOC와 같은 업계 표준을 살펴봅니다. 위험 식별, 보안 제어 구현, 규정 준수 평가, 데이터 보호 관리 기술을 개발합니다. 또한 위험 관리 및 규정 준수에 특화된 Google Cloud 및 멀티 클라우드 도구를 직접 사용해 볼 수 있습니다. 또한 이 과정에서는 취업 지원 및 면접 준비 기법을 통합하여 클라우드 위험 관리의 복잡한 환경을 이해하고 효과적으로 탐색할 수 있는 포괄적인 기반을 제공합니다.

자세히 알아보기

Google Cloud 사이버 보안 수료증의 5개 과정 중 첫 번째 과정입니다. 이 과정에서는 보안 수명 주기, 디지털 혁신, 주요 클라우드 컴퓨팅 개념 등 사이버 보안의 필수사항을 살펴봅니다. 초급 클라우드 보안 분석가가 작업을 자동화하는 데 사용하는 일반적인 도구도 파악합니다.

자세히 알아보기

This video covers how to use Gemini in Gmail to summarize emails, find information, and draft replies, helping you manage your inbox more efficiently.

자세히 알아보기

This video covers five key ways to use Google's AI tools, including Gemini in Workspace, the Gemini app, and NotebookLM, to enhance your daily productivity.

자세히 알아보기

This video covers how to build a personalized "Work with Me" agent using Gemini Gems, which helps streamline foundational feedback and makes your meetings more strategic and efficient.

자세히 알아보기

Eventarc 시작하기 과정을 완료하고 기술 배지를 획득하세요. 이 과정에서는 Eventarc를 사용하여 Pub/Sub 주제 및 Cloud Storage 버킷을 포함한 다양한 리소스에 대한 이벤트 트리거를 만듭니다.

자세히 알아보기

Google Cloud에 CI/CD 파이프라인 구현하기 기술 배지 과정을 완료하고 중급 기술 배지를 획득하세요. 이 과정에서는 Artifact Registry, Cloud Build, Cloud Deploy를 사용하는 방법을 알아보고, Google Cloud 콘솔, Google Cloud CLI, Cloud Run, GKE를 사용해 봅니다. 이 과정을 통해 지속적 통합 파이프라인을 빌드하고, 아티팩트를 저장 및 보호하고, 취약점을 검사하고, 승인된 버전의 유효성을 증명하는 방법을 알아볼 수 있습니다. 또한 GKE와 Cloud Run에 모두 애플리케이션을 배포하는 실무 경험도 쌓을 수 있습니다.

자세히 알아보기

중급 Google Cloud에서 Terraform으로 인프라 빌드 기술 배지 과정을 완료하여 Terraform을 사용하는 코드형 인프라(IaC) 원칙, Terraform 구성으로 Google Cloud 리소스 프로비저닝 및 관리, 효과적인 상태 관리(로컬 및 원격), 재사용성 및 구성을 위한 Terraform 코드 모듈화 등에 관한 기술을 입증하세요.

자세히 알아보기

중급 Gemini 및 Streamlit으로 생성형 AI 앱 개발하기 기술 배지 과정을 완료하여 텍스트 생성, Python SDK와 Gemini API를 사용한 함수 호출 적용, Cloud Run으로 Streamlit 애플리케이션 배포 작업과 관련된 기술 역량을 입증하세요. 텍스트 생성을 위해 Gemini에 프롬프트를 입력하는 여러 가지 방법과 Cloud Shell을 사용해 Streamlit 애플리케이션을 테스트하고 반복하는 방법, Streamlit 애플리케이션을 Cloud Run에 배포된 Docker 컨테이너로 패키징하는 방법을 배울 수 있습니다.

자세히 알아보기

중급 Security Command Center로 위협과 취약점 완화하기 기술 배지 과정을 완료하여 환경 위협을 예방 및 관리하고, 애플리케이션 취약점을 식별 및 완화하며, 보안 이상에 대응하는 기술 역량을 입증하세요.

자세히 알아보기

중급 Google Cloud에서 Kubernetes 관리 기술 배지 과정을 완료하여 kubectl로 배포 관리, Google Kubernetes Engine(GKE)에서 애플리케이션 디버깅 및 모니터링, 지속적 배포 기법과 관련된 기술 역량을 입증하세요.

자세히 알아보기

중급 BigQuery ML로 ML 모델 만들기 기술 배지 과정을 완료하면 BigQuery ML로 머신러닝 모델을 만들고 평가하여 데이터 예측을 수행하는 기술 역량을 입증할 수 있습니다.

자세히 알아보기

생성형 AI 에이전트: 조직 혁신'은 Gen AI Leader 학습 과정의 다섯 번째이자 마지막 과정입니다. 이 과정에서는 조직이 어떻게 커스텀 생성형 AI 에이전트를 사용해 특정 비즈니스 과제를 해결할 수 있는지 살펴봅니다. 모델, 추론 루프, 도구와 같은 에이전트의 구성요소를 살펴보며 기본적인 생성형 AI 에이전트를 빌드하는 실무형 실습을 진행합니다.

자세히 알아보기

이 과정에서는 데이터-AI 워크플로를 지원하는 AI 기반 기능 모음인 BigQuery의 Gemini에 관해 살펴봅니다. 이러한 기능에는 데이터 탐색 및 준비, 코드 생성 및 문제 해결, 워크플로 탐색 및 시각화 등이 있습니다. 이 과정은 개념 설명, 실제 사용 사례, 실무형 실습을 통해 데이터 실무자가 생산성을 향상하고 개발 파이프라인의 속도를 높이는 데 도움이 됩니다.

자세히 알아보기

이 과정은 BigQuery에서 생성형 AI 작업에 AI/ML 모델을 사용하는 방법을 보여줍니다. 고객 관계 관리와 관련된 실제 사용 사례를 통해 Gemini 모델로 비즈니스 문제를 해결하는 워크플로를 설명합니다. 이해를 돕기 위해 SQL 쿼리와 Python 노트북을 사용하는 코딩 솔루션을 단계별로 안내합니다.

자세히 알아보기

BigQuery ML을 사용한 추론, 데이터 분석가가 BigQuery ML을 사용해야 하는 이유, 사용 사례, 지원되는 ML 모델을 알아봅니다. BigQuery에서 ML 모델을 만들고 관리하는 방법도 배웁니다.

자세히 알아보기

이 과정에서는 Google Cloud의 생성형 AI 기반 파트너인 Gemini가 고객 데이터를 분석하고 제품 판매를 예측하는 데 어떤 도움이 되는지 알아봅니다. BigQuery에서 고객 데이터를 사용해 신규 고객을 식별, 분류, 개발하는 방법도 다룹니다. 실무형 실습을 통해 Gemini로 데이터 분석 및 머신러닝 워크플로가 얼마나 개선되는지 경험할 수 있습니다. Duet AI의 이름이 Google의 차세대 모델인 Gemini로 변경되었습니다.

자세히 알아보기

초급 Vertex AI의 프롬프트 설계 기술 배지를 완료하여 Vertex AI 내 프롬프트 엔지니어링, 이미지 분석, 멀티모달 생성형 기술과 관련된 기술 역량을 입증하세요. 효과적인 프롬프트를 만들고 생성형 AI 출력을 안내하며 실제 마케팅 분야 시나리오에 Gemini 모델을 적용하는 방법을 알아보세요.

자세히 알아보기

기업에서 인공지능과 머신러닝의 사용이 계속 증가함에 따라 책임감 있는 빌드의 중요성도 커지고 있습니다. 대부분의 기업은 책임감 있는 AI를 실천하기가 말처럼 쉽지 않습니다. 조직에서 책임감 있는 AI를 운영하는 방법에 관심이 있다면 이 과정이 도움이 될 것입니다. 이 과정에서 책임감 있는 AI를 위해 현재 Google Cloud가 기울이고 있는 노력, 권장사항, Google Cloud가 얻은 교훈을 알아보면 책임감 있는 AI 접근 방식을 구축하기 위한 프레임워크를 수립할 수 있을 것입니다.

자세히 알아보기

책임감 있는 AI란 무엇이고 이것이 왜 중요하며 Google에서는 어떻게 제품에 책임감 있는 AI를 구현하고 있는지 설명하는 입문용 마이크로 학습 과정입니다. Google의 7가지 AI 원칙도 소개합니다.

자세히 알아보기

이 과정은 입문용 마이크로 학습 과정으로, 대규모 언어 모델(LLM)이란 무엇이고, LLM을 활용할 수 있는 사용 사례로는 어떤 것이 있으며, 프롬프트 조정을 사용해 LLM 성능을 개선하는 방법은 무엇인지 알아봅니다. 또한 자체 생성형 AI 앱을 개발하는 데 도움이 되는 Google 도구에 대해서도 다룹니다.

자세히 알아보기

생성형 AI란 무엇이고 어떻게 사용하며 전통적인 머신러닝 방법과는 어떻게 다른지 설명하는 입문용 마이크로 학습 과정입니다. 직접 생성형 AI 앱을 개발하는 데 도움이 되는 Google 도구에 대해서도 다룹니다.

자세히 알아보기