Kevin Degila
Date d'abonnement : 2021
Ligue d'Argent
9555 points
Date d'abonnement : 2021
Le cours "Applications d'IA générative : changez votre façon de travailler" est le quatrième du parcours de formation "Leader en IA générative". Ce cours présente les applications d'IA générative de Google, telles que Gemini pour Workspace et NotebookLM. Il vous guide à travers des concepts comme l'ancrage, la génération augmentée par récupération, la création de requêtes efficaces et la conception de workflows automatisés.
Le cours "IA générative : se familiariser avec le domaine" est le troisième du parcours de formation "Leader en IA générative". L'IA générative change notre façon de travailler et d'interagir avec le monde autour de nous. En tant que responsable, comment pouvez-vous exploiter son potentiel pour obtenir des résultats commerciaux concrets ? Dans ce cours, vous allez découvrir les différentes couches qui composent une solution d'IA générative, les offres de Google Cloud et les facteurs à prendre en compte au moment de choisir une solution.
Le cours "IA générative : découvrir les concepts fondamentaux" est le deuxième du parcours de formation "Leader en IA générative". Ce cours vous permettra de découvrir les concepts fondamentaux de l'IA générative en examinant les différences entre l'IA, le ML et l'IA générative. Vous comprendrez également comment l'IA générative permet de relever les défis métier à l'aide des différents types de données. Enfin, vous découvrirez les stratégies de Google Cloud pour gérer les limites des modèles de fondation et quelles sont les grandes problématiques du développement et du déploiement d'une IA responsable et sécurisée.
Le cours "IA générative : au-delà du chatbot" est le premier du parcours de formation "Leader en IA générative" et n'a aucun prérequis. Ce cours vise à approfondir votre compréhension de base des chatbots afin de révéler le véritable potentiel de l'IA générative pour votre entreprise. Vous découvrirez des concepts tels que les modèles de fondation et le prompt engineering (ingénierie des requêtes), qui sont essentiels pour exploiter toute la puissance de l'IA générative. Ce cours vous aidera également à identifier les facteurs à prendre en compte pour développer une stratégie d'IA générative efficace pour votre entreprise.
Cette quête est la première d'une série de deux comprenant des ateliers pratiques tirés d'exercices disponibles dans l'ouvrage Data Science on Google Cloud Platform de Valliappa Lakshmanan, publié par O'Reilly Media, Inc. Dans cette première quête, qui couvre les chapitres 1 à 8, vous découvrez tous les aspects de l'ingestion, de la préparation, du traitement, de l'interrogation, de l'exploration et de la visualisation des ensembles de données à l'aide des outils et des services de Google Cloud Platform.
Earn a skill badge by completing the Explore Machine Learning Models with Explainable AI quest, where you will learn how to do the following using Explainable AI: build and deploy a model to an AI platform for serving (prediction), use the What-If Tool with an image recognition model, identify bias in mortgage data using the What-If Tool, and compare models using the What-If Tool to identify potential bias. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete this skill badge quest and the final assessment challenge lab to receive a skill badge that you can share with your network.
Big data, machine learning et données scientifiques ? Il semble que ce soit la combinaison parfaite. Dans cette quête avancée, vous allez vous familiariser avec des services GCP tels que Big Query, Dataproc et Tensorflow, que vous appliquerez à des cas utilisant des ensembles de données scientifiques réelles. En vous faisant acquérir de l'expérience avec des tâches telles que l'analyse des données sismiques et l'agrégation d'images satellites, le traitement de données scientifiques développera vos compétences dans le domaine du Big data et du machine learning, et vous aidera à résoudre les problèmes que vous rencontrez dans différentes disciplines scientifiques.
Terminez le cours d'introduction Préparer des données pour les API de ML sur Google Cloud pour recevoir un badge démontrant vos compétences dans les domaines suivants : le nettoyage des données avec Dataprep by Trifacta, l'exécution de pipelines de données dans Dataflow, la création de clusters et l'exécution de jobs Apache Spark dans Dataproc, et l'appel d'API de ML comme l'API Cloud Natural Language, l'API Google Cloud Speech-to-Text et l'API Video Intelligence.
Cette quête d'introduction se compose d'ateliers pratiques qui vous permettent de vous familiariser avec les outils et services de base de Google Cloud Platform. "GCP Essentials" est la première quête recommandée pour les personnes s'intéressant à Google Cloud. Vous pouvez la suivre sans aucune connaissance (ou presque) du cloud et, une fois la quête terminée, vous disposerez de compétences pratiques qui vous seront utiles pour n'importe quel projet GCP. De l'écriture de lignes de commande Cloud Shell au déploiement de votre première machine virtuelle en passant par l'exécution d'applications sur Kubernetes Engine avec l'équilibrage de charge, "GCP Essentials" constitue une excellente introduction aux fonctionnalités de base de la plate-forme. Des vidéos d'une minute résument les concepts clés de ces ateliers.