Kaike Medeiros
Date d'abonnement : 2022
Ligue de Diamant
30945 points
Date d'abonnement : 2022
Ce cours passe en revue les fonctionnalités de sécurité essentielles de Model Armor et vous prépare à utiliser le service. Vous découvrirez les risques de sécurité associés aux LLM et comment Model Armor protège vos applications d'IA.
L'intelligence artificielle (IA) offre des possibilités de transformation, mais elle présente également de nouveaux enjeux de sécurité. Ce cours apporte aux responsables de la sécurité et de la protection des données des stratégies pour gérer l'IA de façon sécurisée dans leurs organisations. Découvrez un framework pour identifier et atténuer de manière proactive les risques spécifiques à l'IA, protéger les données sensibles, assurer la conformité et construire une infrastructure d'IA résiliente. Choisissez des cas d'utilisation dans quatre secteurs d'activité différents pour savoir comment ces stratégies s'appliquent dans des scénarios réels.
Ce cours présente des points importants au sujet de la confidentialité et de la sécurité de l'IA. Vous découvrirez des méthodes pratiques et des outils pour mettre en place des pratiques recommandées de confidentialité et de sécurité de l'IA à l'aide de produits Google Cloud et d'outils Open Source.
Ce cours présente les concepts d'interprétabilité et de transparence de l'IA. Il explique en quoi la transparence de l'IA est importante pour les développeurs et les ingénieurs. Il explore des méthodes et des outils pratiques permettant d'atteindre l'interprétabilité et la transparence des modèles d'IA et des données.
Ce cours présente le concept d'IA responsable et les principes associés. Il met en avant des techniques permettant d'identifier des données équitables ou biaisées, et de limiter les biais lors de l'utilisation de l'IA/du ML. Vous découvrirez des méthodes pratiques et des outils pour mettre en place de bonnes pratiques d'IA responsable à l'aide des produits Google Cloud et des outils Open Source.
Ce cours apporte aux professionnels du machine learning les techniques, les bonnes pratiques et les outils essentiels pour évaluer les modèles d'IA prédictive et générative. L'évaluation des modèles est primordiale pour s'assurer que les systèmes de ML fournissent des résultats fiables, précis et de haut niveau en production. Les participants acquerront une connaissance approfondie de diverses métriques et méthodologies d'évaluation, ainsi que de leur application appropriée dans différents types de modèles et tâches. Le cours mettra l'accent sur les défis uniques posés par les modèles d'IA générative et proposera des stratégies pour les relever efficacement. Grâce à la plate-forme Vertex AI de Google Cloud, les participants apprendront à implémenter des processus d'évaluation rigoureux pour la sélection, l'optimisation et la surveillance continue des modèles.
Dans ce cours, vous allez acquérir les connaissances et les outils nécessaires pour identifier les problématiques uniques auxquelles les équipes MLOps sont confrontées lors du déploiement et de la gestion de modèles d'IA générative. Vous verrez également en quoi Vertex AI permet aux équipes d'IA de simplifier les processus MLOps et de faire aboutir leurs projets d'IA générative.
Avec l'essor de l'utilisation de l'intelligence artificielle et du machine learning en entreprise, il est de plus en plus important de développer ces technologies de manière responsable. Pour beaucoup, le véritable défi réside dans la mise en pratique de l'IA responsable, qui s'avère bien plus complexe que dans la théorie. Si vous souhaitez découvrir comment opérationnaliser l'IA responsable dans votre organisation, ce cours est fait pour vous. Dans ce cours, vous allez apprendre comment Google Cloud procède actuellement, en s'appuyant sur des bonnes pratiques et les enseignements tirés, afin de vous fournir un framework pour élaborer votre propre approche d'IA responsable.
Terminez le cours d'introduction Conception de requêtes dans Vertex AI pour recevoir un badge démontrant vos compétences dans les domaines suivants : le prompt engineering (ingénierie des requêtes), l'analyse d'images et les techniques d'IA générative multimodale dans Vertex AI. Découvrez comment élaborer des requêtes efficaces, guider les résultats de l'IA générative et appliquer des modèles Gemini à des scénarios marketing concrets.
Ce cours de micro-apprentissage, qui s'adresse aux débutants, explique ce qu'est l'IA responsable, souligne son importance et décrit comment Google l'implémente dans ses produits. Il présente également les sept principes de l'IA de Google.
Ce cours de micro-apprentissage, qui s'adresse aux débutants, explique ce que sont les grands modèles de langage (LLM). Il inclut des cas d'utilisation et décrit comment améliorer les performances des LLM grâce au réglage des requêtes. Il présente aussi les outils Google qui vous aideront à développer votre propre application d'IA générative.
Ce cours de micro-apprentissage, qui s'adresse aux débutants, explique ce qu'est l'IA générative, décrit à quoi elle sert et souligne ce qui la distingue des méthodes de machine learning traditionnel. Il présente aussi les outils Google qui vous aideront à développer votre propre application d'IA générative.
Ce cours va au-delà des opérations de base dans Looker Studio. Il explore les puissantes fonctionnalités et capacités de Looker Studio Pro. Apprenez à utiliser les espaces de travail en équipe pour optimiser la collaboration, à améliorer l'administration et la sécurité des données et à recourir à l'assistance de Google Cloud Customer Care. Découvrez des fonctionnalités premium qui améliorent la visualisation des données et les capacités de création de rapports. Ce cours s'adresse aux utilisateurs qui maîtrisent déjà les bases de Looker Studio et qui souhaitent exploiter tout son potentiel dans leur entreprise ou leur organisation.
Terminez le cours d'introduction Dégager des insights des données BigQuery pour recevoir un badge démontrant vos compétences dans les domaines suivants : l'écriture de requêtes SQL, l'interrogation de tables publiques, le chargement d'exemples de données dans BigQuery, la résolution d'erreurs de syntaxe courantes avec l'outil de validation des requêtes de BigQuery et la création de rapports dans Looker Studio en se connectant aux données BigQuery.
Ce cours est le premier sur les cinq que compte le certificat Google Cloud Data Analytics. Vous définirez le domaine de l'analyse de données cloud, et décrirez les rôles et responsabilités d'un analyste de données cloud dans l'acquisition, le stockage, le traitement et la visualisation des données. Vous étudierez l'architecture des outils Google Cloud tels que BigQuery et Cloud Storage, et verrez comment les utiliser efficacement pour structurer et présenter les données, ainsi que pour générer des rapports.
Ce cours est le deuxième sur les cinq que compte le certificat Google Cloud Data Analytics. Il explique comment les données sont structurées et organisées. Vous allez acquérir une expérience pratique de l'architecture de data lakehouse et de ses composants cloud comme BigQuery, Google Cloud Storage et DataProc pour stocker, analyser et traiter efficacement de grands ensembles de données.
This is the third of five courses in the Google Cloud Data Analytics Certificate. In this course, you’ll begin by getting an overview of the data journey, from collection to insights. You’ll then learn how to use SQL to transform raw data into a usable format. Next, you’ll learn how to transform high volumes of data with a data pipeline. Finally, you’ll gain experience applying transformation strategies to real data sets to solve business needs.
Ce cours est le quatrième sur les cinq que compte le certificat Google Cloud Data Analytics. Dans ce cours, vous allez développer des compétences associées aux cinq étapes clés de la visualisation des données dans le cloud : le storytelling, la planification, l'exploration des données, la création de visualisations et le partage des données avec d'autres personnes. Vous allez approfondir votre connaissance des interfaces et de l'expérience utilisateur pour créer des wireframes de visualisations cloud natives percutantes. Vous travaillerez également avec des outils de visualisation de données cloud natifs pour explorer des ensembles de données, créer des rapports et concevoir des tableaux de bord qui favorisent la prise de décisions et la collaboration.
Ce cours est le dernier sur les cinq que compte le certificat Google Cloud Data Analytics. Dans ce cours, vous allez combiner les connaissances et compétences de base acquises lors des quatre premiers cours et les appliquer dans un projet pratique de synthèse axé sur la réalisation d'un projet complet sur le cycle de vie des données. Vous vous entraînerez à utiliser des outils cloud pour acquérir, stocker, traiter, analyser, visualiser et communiquer efficacement des insights sur les données. À la fin du cours, vous aurez réalisé un projet démontrant votre capacité à structurer efficacement des données provenant de plusieurs sources, à présenter des solutions aux différentes personnes concernées et à visualiser des insights sur les données à l'aide d'un logiciel cloud. Vous actualiserez également votre CV et vous vous entraînerez à passer des entretiens pour vous préparer à postuler.
Obtenez un badge de compétence en suivant le cours Premiers pas avec Looker, dans lequel vous apprendrez à analyser, visualiser et organiser des données à l'aide de Looker Studio et Looker.
This is the fifth of five courses in the Google Cloud Data Analytics Certificate. In this course, you’ll combine and apply the foundational knowledge and skills from courses 1-4 in a hands-on Capstone project that focuses on the full data lifecycle project. You’ll practice using cloud-based tools to acquire, store, process, analyze, visualize, and communicate data insights effectively. By the end of the course, you’ll have completed a project demonstrating their proficiency in effectively structuring data from multiple sources, presenting solutions to varied stakeholders, and visualizing data insights using cloud-based software. You’ll also update your resume and practice interview techniques to help prepare for applying and interviewing for jobs.
This is the fourth of five courses in the Google Cloud Data Analytics Certificate. In this course, you’ll focus on developing skills in the five key stages of visualizing data in the cloud: storytelling, planning, exploring data, building visualizations, and sharing data with others. You’ll also gain experience using UI/UX skills to wireframe impactful, cloud-native visualizations and work with cloud-native data visualization tools to explore datasets, create reports, and build dashboards that drive decisions and foster collaboration.
This is the third of five courses in the Google Cloud Data Analytics Certificate. In this course, you’ll begin by getting an overview of the data journey, from collection to insights. You’ll then learn how to use SQL to transform raw data into a usable format. Next, you’ll learn how to transform high volumes of data with a data pipeline. Finally, you’ll gain experience applying transformation strategies to real data sets to solve business needs.
This is the second of five courses in the Google Cloud Data Analytics Certificate. In this course, you’ll explore how data is structured and organized. You’ll gain hands-on experience with the data lakehouse architecture and cloud components like BigQuery, Google Cloud Storage, and DataProc to efficiently store, analyze, and process large datasets.
This is the first of five courses in the Google Cloud Data Analytics Certificate. In this course, you’ll define the field of cloud data analysis and describe roles and responsibilities of a cloud data analyst as they relate to data acquisition, storage, processing, and visualization. You’ll explore the architecture of Google Cloud-based tools, like BigQuery and Cloud Storage, and how they are used to effectively structure, present, and report data.
Obtenez un badge de compétence avancé en suivant le cours Utiliser des API de machine learning sur Google Cloud, qui présente les fonctionnalités de base des technologies de machine learning et d'IA suivantes : l'API Cloud Vision, l'API Cloud Translation et l'API Cloud Natural Language.
Obtenez un badge de compétence en terminant le cours intermédiaire Créer et déployer des solutions de machine learning sur Vertex. Vous y apprendrez à utiliser la plate-forme Vertex AI de Google Cloud, AutoML et les services d'entraînement personnalisés pour entraîner, évaluer, régler, expliquer et déployer des modèles de machine learning. Ce cours, qui ouvre droit à un badge de compétence, est destiné aux data scientists et aux ingénieurs en machine learning. Un badge de compétence est un badge numérique exclusif délivré par Google Cloud. Il atteste de votre expertise des produits et services Google Cloud et de votre capacité à mettre en pratique vos connaissances dans un environnement concret et interactif. Terminez ce cours et passez l'évaluation finale de l'atelier challenge pour recevoir un badge de compétence que vous pourrez partager avec votre réseau.
Les cours Google Cloud Computing Foundations sont destinés aux personnes ayant peu ou pas de connaissances ni d'expérience dans le cloud computing. Ils offrent un aperçu des concepts de base du cloud, du big data et du machine learning, et explique où et comment Google Cloud s'y intègre. À la fin de cette série de cours, les participants seront à même de définir ces concepts et auront acquis des compétences pratiques. Les cours doivent être suivis dans cet ordre : 1. Google Cloud Computing Foundations : principes de base du cloud computing 2. Google Cloud Computing Foundations : infrastructure dans Google Cloud 3. Google Cloud Computing Foundations : mise en réseau et sécurité dans Google Cloud 4. Google Cloud Computing Foundations : données, ML et IA dans Google Cloud Ce troisième cours aborde les outils d'automatisation et de gestion du cloud, ainsi que la création de réseaux sécurisés.
Les cours Google Cloud Computing Foundations sont destinés aux personnes ayant peu ou pas de connaissances ni d'expérience dans le cloud computing. Ils offrent un aperçu des concepts de base du cloud, du big data et du machine learning, et explique où et comment Google Cloud s'y intègre. À la fin de cette série de cours, les participants seront à même de définir ces concepts et auront acquis des compétences pratiques. Les cours doivent être suivis dans cet ordre : 1. Google Cloud Computing Foundations : principes de base du cloud computing 2. Google Cloud Computing Foundations : infrastructure dans Google Cloud 3. Google Cloud Computing Foundations : mise en réseau et sécurité dans Google Cloud 4. Google Cloud Computing Foundations : données, ML et IA dans Google Cloud Ce dernier cours de la série présente les services de big data gérés, ainsi que le machine learning et sa valeur. Il explique également comment aller plus loin pour démontrer vos compétences dans Google Cloud en o…
Les cours Google Cloud Computing Foundations sont destinés aux personnes ayant peu ou pas de connaissances ni d'expérience dans le cloud computing. Ils offrent un aperçu des concepts de base du cloud, du big data et du machine learning, et expliquent où et comment Google Cloud s'y intègre. À la fin de cette série de cours, les participants seront à même de définir ces concepts et auront acquis des compétences pratiques. Les cours doivent être suivis dans cet ordre : 1. Google Cloud Computing Foundations : principes de base du cloud computing 2. Google Cloud Computing Foundations : infrastructure dans Google Cloud 3. Google Cloud Computing Foundations : mise en réseau et sécurité dans Google Cloud 4. Google Cloud Computing Foundations : données, ML et IA dans Google Cloud
Les cours Google Cloud Computing Foundations sont destinés aux personnes ayant peu ou pas de connaissances ni d'expérience dans le cloud computing. Ils offrent un aperçu des concepts de base du cloud, du big data et du machine learning, et expliquent où et comment Google Cloud s'y intègre. À la fin de cette série de cours, les participants seront à même de définir ces concepts et auront acquis des compétences pratiques. Les cours doivent être suivis dans cet ordre : 1. Google Cloud Computing Foundations : principes de base du cloud computing 2. Google Cloud Computing Foundations : infrastructure dans Google Cloud 3. Google Cloud Computing Foundations : mise en réseau et sécurité dans Google Cloud 4. Google Cloud Computing Foundations : données, ML et IA dans Google Cloud Ce premier cours offre une vue d’ensemble du cloud computing, des façons d’utiliser Google Cloud et des différentes options de calcul.
Terminez le cours d'introduction Préparer des données pour les API de ML sur Google Cloud pour recevoir un badge démontrant vos compétences dans les domaines suivants : le nettoyage des données avec Dataprep by Trifacta, l'exécution de pipelines de données dans Dataflow, la création de clusters et l'exécution de jobs Apache Spark dans Dataproc, et l'appel d'API de ML comme l'API Cloud Natural Language, l'API Google Cloud Speech-to-Text et l'API Video Intelligence.
Obtenez un badge de compétence en suivant le cours Créer un réseau Google Cloud sécurisé, dans lequel vous découvrirez plusieurs ressources liées à la mise en réseau permettant de créer, de faire évoluer et de sécuriser vos applications sur Google Cloud.
Suivez le cours Configurer un environnement de développement d'applications sur Google Cloud et obtenez un badge de compétence. Dans ce cours, vous apprendrez à créer et connecter une infrastructure cloud axée sur le stockage à l'aide des fonctionnalités de base des technologies suivantes Cloud Storage, Identity and Access Management, Cloud Functions et Pub/Sub.
Terminez le cours d'introduction Implémenter Cloud Load Balancing pour Compute Engine pour recevoir un badge démontrant vos compétences dans les domaines suivants : Créer et déployer des machines virtuelles dans Compute Engine Configurer des équilibreurs de charge réseau et d'application.