参加 ログイン

Gohil Jay

メンバー加入日: 2020

シルバーリーグ

6900 ポイント
Google Cloud でのウェブサイトの構築 Earned 5月 6, 2021 EDT
BigQuery のデータから分析情報を引き出す Earned 5月 6, 2021 EDT
Google Cloud におけるアプリ開発環境の設定 Earned 5月 6, 2021 EDT
Website on Google Cloud Earned 5月 6, 2021 EDT
ML 入門: 言語処理 Earned 5月 5, 2021 EDT
NCAA® March Madness®: Bracketology with Google Cloud Earned 5月 5, 2021 EDT
DEPRECATED BigQuery Basics for Data Analysts Earned 5月 5, 2021 EDT
Understand Your Google Cloud Costs Earned 5月 4, 2021 EDT
クラウド エンジニアリング Earned 5月 4, 2021 EDT
Compute Engine での Cloud Load Balancing の実装 Earned 5月 1, 2021 EDT
Google Cloud Essentials Earned 5月 1, 2021 EDT
ベースライン: インフラストラクチャ Earned 5月 1, 2021 EDT
Intermediate ML: TensorFlow on Google Cloud Earned 3月 11, 2021 EST
Google Cloud Platformでのデータサイエンス:機械学習 Earned 3月 10, 2021 EST
Advanced ML: ML Infrastructure Earned 3月 10, 2021 EST
Data Science on the Google Cloud Platform Earned 3月 7, 2021 EST
ベースライン: データ、ML、AI Earned 3月 4, 2021 EST
Data Catalog Fundamentals Earned 3月 4, 2021 EST
DEPRECATED Explore Machine Learning Models with Explainable AI Earned 3月 3, 2021 EST
Google Cloud の ML API 用にデータを準備 Earned 1月 15, 2021 EST
Google Cloud ネットワークの構築 Earned 1月 14, 2021 EST

「Google Cloud でウェブサイトを構築する」スキルバッジ コースを修了して入門レベルの スキルバッジを獲得しましょう。 このコースは「Get Cooking in Cloud」シリーズに基づいており、次の内容を扱います。 Cloud Run でウェブサイトをデプロイするCompute Engine でウェブアプリをホストするGoogle Kubernetes Engine でウェブサイトを作成、デプロイ、 スケーリングするCloud Build を使用してモノリシック アプリケーションからマイクロサービス アーキテクチャに移行する

詳細

「BigQuery のデータから分析情報を引き出す」の入門スキルバッジを獲得すると、 SQL クエリの作成、一般公開テーブルに対するクエリの実行、BigQuery へのサンプルデータの読み込み、BigQuery でのクエリ バリデータを使用した一般的な構文エラーのトラブルシューティング、 BigQuery データへの接続による Looker Studio でのレポート作成といったスキルを実証できます。

詳細

「Google Cloud におけるアプリ開発環境の設定」コースを完了すると、スキルバッジを獲得できます。このコースでは、 Cloud Storage、Identity and Access Management、Cloud Functions、Pub/Sub のテクノロジーの基本機能を使用して、ストレージ中心のクラウド インフラストラクチャを構築し接続する方法を学びます。

詳細

このクエストでは、ウェブサイトが利用可能でスケーラブルであることを確認するために使用できる 4 つの Google Cloud ウェブサイト アーキテクチャについて学習します。 ハンズオンラボでスキルや知識を試したいですか?Build a Website on Google Cloud クエストの最後にあるチャレンジラボに登録し、完了した際には Google Cloud 限定デジタルバッジを獲得できます。このクエストは、Get Cooking in Cloud のビデオシリーズに基づいています。

詳細

ML は、IT 分野で最も急速に成長している技術の一つであり、Google Cloud Platform はその発展に大きく貢献してきました。 Google Cloud では多数の API により、ほぼすべての ML ジョブに対応するツールを提供しています。 この入門コースでは、ラボを通じて言語処理に活用できる ML の実践演習を行います。 これにより、テキストからのエンティティの抽出、 感情分析と構文解析、音声文字変換のための Speech-to-Text API の使用方法を学ぶことができます。

詳細

In this series of labs you will learn how to use BigQuery to analyze NCAA basketball data with SQL. Build a Machine Learning Model to predict the outcomes of NCAA March Madness basketball tournament games.

詳細

Want to scale your data analysis efforts without managing database hardware? Learn the best practices for querying and getting insights from your data warehouse with this interactive series of BigQuery labs. BigQuery is Google's fully managed, NoOps, low cost analytics database. With BigQuery you can query terabytes and terabytes of data without having any infrastructure to manage or needing a database administrator. BigQuery uses SQL and can take advantage of the pay-as-you-go model. BigQuery allows you to focus on analyzing data to find meaningful insights.

詳細

このクエストは、技術または財務の担当者で GCP の費用の管理を担う方に最適です。請求先アカウントを設定する方法、リソースを整理する方法、請求アクセス権限を管理する方法について学習します。ハンズオンラボでは、請求書を表示する方法、請求レポートを使用して GCP の費用を追跡する方法、BigQuery や Google スプレッドシートを使用して請求データを分析する方法、データポータルを使用してカスタムの請求ダッシュボードを作成する方法について学習します。

詳細

この入門コースは、他のコースとは異なるものです。 これらのラボは、Google Cloud Certified Associate Cloud Engineer 認定資格試験に出題されるトピックやサービスについて、IT プロフェッショナルがハンズオンで演習するために作成されました。IAM からネットワーキング、 Kubernetes Engine のデプロイまでを 網羅する個別のラボで構成されており、Goodle Cloud の知識が試されます。これらのラボによる演習で 知識やスキルや能力を向上させることは可能ですが、 試験ガイドやその他の対策資料も参照することをおすすめします。

詳細

「b>Compute Engine での Cloud Load Balancing の実装」入門コースを修了してスキルバッジを獲得すると、次のスキルを実証できます: Compute Engine における仮想マシンの作成とデプロイ、 ネットワーク ロードバランサとアプリケーション ロードバランサの構成。

詳細

この入門レベルのクエストでは、Google Cloud の基本的なツールやサービスに関する実践演習を行います。「Google Cloud Essentials」は Qwiklabs で特に人気のあるクエストですが、それはクラウドの予備知識がほとんどなくても、あらゆる Google Cloud プロジェクトに応用できる実際的な経験を積めるからです。 「Google Cloud Essentials」では、Cloud Shell コマンドの記述、初めての仮想マシンのデプロイ、Kubernetes Engine 上でのアプリケーション実行と負荷分散など、Google Cloud の主な機能を紹介します。主なコンセプトは 1 分間のビデオで説明されています。

詳細

これは、Google Cloud Essentials よりもレベルの高い内容の練習機会を求めている初心者のクラウド デベロッパーに おすすめのコースです。Cloud Storage だけでなく、 Monitoring や Cloud Run functions などの主要なアプリケーション サービスに関連するラボを通して、 実践的な経験を積むことが可能です。また、 あらゆる Google Cloud イニシアチブに応用できる有益なスキルを身に付けることができます。

詳細

TensorFlow is an open source software library for high performance numerical computation that's great for writing models that can train and run on platforms ranging from your laptop to a fleet of servers in the Cloud to an edge device. This quest takes you beyond the basics of using predefined models and teaches you how to build, train and deploy your own on Google Cloud.

詳細

これは2 つ目のクエストで、Google Cloud Platform の Valliappa Lakshmananが O'Reilly Media, Inc. から出版した「Data Science on the Google Cloud Platform」からの派生したラボです。9つのラボで構成され、1つ目のクエストで練習したスキルをさらに伸ばし、最先端で本格的な機械学習を実際的なデータで実行することで、Google Cloud Platformの機能とサービスを堪能していだけます。

詳細

Machine Learning is one of the most innovative fields in technology, and the Google Cloud Platform has been instrumental in furthering its development. With a host of APIs, Google Cloud has a tool for just about any machine learning job. In this advanced-level course, you will get hands-on practice with machine learning at scale and how to employ the advanced ML infrastructure available on Google Cloud.

詳細

これは 2 つのクエストから構成されるハンズオンラボの 1 つ目のクエストで、『Data Science on Google Cloud Platform』(著者: Valliappa Lakshmanan、出版元: O'Reilly Media, Inc.)という書籍から抜粋した演習をもとに作成されたものです。1 つ目のクエストでは第 8 章までを扱い、Google Cloud Platform のツールとサービスを使用して、データセットの取り込み、準備、処理、クエリ、探索、可視化に関するあらゆる面について学習することができます。

詳細

ビッグデータ、ML、AI は今日のコンピュータ業界ではホットなトピックですが、 これらの分野は非常に専門性が高く、 入門レベルの教材を見つけるのは困難です。幸いなことに、Google Cloud はこうした分野でユーザー フレンドリーなサービスを提供しており、 この入門レベルのコースを通じて、BigQuery、Cloud Speech API、 Video Intelligence などのツールを使い始めるための第一歩を踏み出せます。

詳細

Data Catalog is deprecated and will be discontinued on January 30, 2026. You can still complete this course if you want to. For steps to transition your Data Catalog users, workloads, and content to Dataplex Catalog, see Transition from Data Catalog to Dataplex Catalog (https://cloud.google.com/dataplex/docs/transition-to-dataplex-catalog). Data Catalog is a fully managed and scalable metadata management service that empowers organizations to quickly discover, understand, and manage all of their data. In this quest you will start small by learning how to search and tag data assets and metadata with Data Catalog. After learning how to build your own tag templates that map to BigQuery table data, you will learn how to build MySQL, PostgreSQL, and SQLServer to Data Catalog Connectors.

詳細

Earn a skill badge by completing the Explore Machine Learning Models with Explainable AI quest, where you will learn how to do the following using Explainable AI: build and deploy a model to an AI platform for serving (prediction), use the What-If Tool with an image recognition model, identify bias in mortgage data using the What-If Tool, and compare models using the What-If Tool to identify potential bias. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete this skill badge quest and the final assessment challenge lab to receive a skill badge that you can share with your network.

詳細

「Google Cloud の ML API 用にデータを準備」コースの入門スキルバッジを獲得できるアクティビティを修了すると、 Dataprep by Trifacta を使用したデータのクリーニング、Dataflow でのデータ パイプラインの実行、Dataproc でのクラスタの作成と Apache Spark ジョブの実行、 Cloud Natural Language API、Google Cloud Speech-to-Text API、Video Intelligence API などの ML API の呼び出しに関するスキルを証明できます。

詳細

「Google Cloud ネットワークの構築」コースを修了してスキルバッジを獲得しましょう。このコースでは、 アプリケーションをデプロイしてモニタリングするための複数の方法について学びます。具体的には、IAM ロールの確認とプロジェクト アクセスの追加 / 削除、 VPC ネットワークの作成、Compute Engine VM のデプロイとモニタリング、 SQL クエリの記述、Compute Engine での VM のデプロイとモニタリング、Kubernetes を使用した複数のデプロイ アプローチによるアプリケーションのデプロイなどです。

詳細