Ce cours est le dernier sur les cinq que compte le certificat Google Cloud Data Analytics. Dans ce cours, vous allez combiner les connaissances et compétences de base acquises lors des quatre premiers cours et les appliquer dans un projet pratique de synthèse axé sur la réalisation d'un projet complet sur le cycle de vie des données. Vous vous entraînerez à utiliser des outils cloud pour acquérir, stocker, traiter, analyser, visualiser et communiquer efficacement des insights sur les données. À la fin du cours, vous aurez réalisé un projet démontrant votre capacité à structurer efficacement des données provenant de plusieurs sources, à présenter des solutions aux différentes personnes concernées et à visualiser des insights sur les données à l'aide d'un logiciel cloud. Vous actualiserez également votre CV et vous vous entraînerez à passer des entretiens pour vous préparer à postuler.
Ce cours est le quatrième sur les cinq que compte le certificat Google Cloud Data Analytics. Dans ce cours, vous allez développer des compétences associées aux cinq étapes clés de la visualisation des données dans le cloud : le storytelling, la planification, l'exploration des données, la création de visualisations et le partage des données avec d'autres personnes. Vous allez approfondir votre connaissance des interfaces et de l'expérience utilisateur pour créer des wireframes de visualisations cloud natives percutantes. Vous travaillerez également avec des outils de visualisation de données cloud natifs pour explorer des ensembles de données, créer des rapports et concevoir des tableaux de bord qui favorisent la prise de décisions et la collaboration.
This is the third of five courses in the Google Cloud Data Analytics Certificate. In this course, you’ll begin by getting an overview of the data journey, from collection to insights. You’ll then learn how to use SQL to transform raw data into a usable format. Next, you’ll learn how to transform high volumes of data with a data pipeline. Finally, you’ll gain experience applying transformation strategies to real data sets to solve business needs.
Ce cours est le deuxième sur les cinq que compte le certificat Google Cloud Data Analytics. Il explique comment les données sont structurées et organisées. Vous allez acquérir une expérience pratique de l'architecture de data lakehouse et de ses composants cloud comme BigQuery, Google Cloud Storage et DataProc pour stocker, analyser et traiter efficacement de grands ensembles de données.
Ce cours est le premier sur les cinq que compte le certificat Google Cloud Data Analytics. Vous définirez le domaine de l'analyse de données cloud, et décrirez les rôles et responsabilités d'un analyste de données cloud dans l'acquisition, le stockage, le traitement et la visualisation des données. Vous étudierez l'architecture des outils Google Cloud tels que BigQuery et Cloud Storage, et verrez comment les utiliser efficacement pour structurer et présenter les données, ainsi que pour générer des rapports.
Ce cours va au-delà des opérations de base dans Looker Studio. Il explore les puissantes fonctionnalités et capacités de Looker Studio Pro. Apprenez à utiliser les espaces de travail en équipe pour optimiser la collaboration, à améliorer l'administration et la sécurité des données et à recourir à l'assistance de Google Cloud Customer Care. Découvrez des fonctionnalités premium qui améliorent la visualisation des données et les capacités de création de rapports. Ce cours s'adresse aux utilisateurs qui maîtrisent déjà les bases de Looker Studio et qui souhaitent exploiter tout son potentiel dans leur entreprise ou leur organisation.
Obtenez un badge de compétence en suivant le cours Premiers pas avec Looker, dans lequel vous apprendrez à analyser, visualiser et organiser des données à l'aide de Looker Studio et Looker.
Ce cours est le deuxième sur les cinq que compte le certificat Google Cloud Cybersecurity. Dans ce cours, vous allez découvrir les frameworks de gestion des risques cloud les plus utilisés. Vous explorerez les domaines de sécurité, les cycles de vie de la conformité et les normes du secteur telles que HIPAA, NIST CSF et SOC. Vous développerez des compétences en identification des risques, en implémentation de contrôles de sécurité, en évaluation de la conformité et en gestion de la protection des données. Vous vous familiariserez également avec les outils Google Cloud et multicloud spécifiques à la gestion des risques et de la conformité. Ce cours intègre également des techniques de préparation aux entretiens et aux candidatures, offrant ainsi une base complète pour comprendre et gérer efficacement le paysage complexe de la gestion des risques liés au cloud.
Il s'agit du premier des cinq cours du certificat Google Cloud Cybersecurity. Dans ce cours, vous découvrirez les principes de base de la cybersécurité, dont le cycle de vie de la sécurité, la transformation numérique et les concepts clés du cloud computing. Vous identifierez les outils couramment utilisés par les analystes de la sécurité du cloud débutants pour automatiser les tâches.
This is the second of five courses in the Google Cloud Data Analytics Certificate. In this course, you’ll explore how data is structured and organized. You’ll gain hands-on experience with the data lakehouse architecture and cloud components like BigQuery, Google Cloud Storage, and DataProc to efficiently store, analyze, and process large datasets.
This is the second of five courses in the Google Cloud Cybersecurity Certificate. In this course, you’ll explore widely-used cloud risk management frameworks, exploring security domains, compliance lifecycles, and industry standards such as HIPAA, NIST CSF, and SOC. You'll develop skills in risk identification, implementation of security controls, compliance evaluation, and data protection management. Additionally, you'll gain hands-on experience with Google Cloud and multi-cloud tools specific to risk and compliance. This course also incorporates job application and interview preparation techniques, offering a comprehensive foundation to understand and effectively navigate the complex landscape of cloud risk management.
"Concepts fondamentaux de Google Cloud : infrastructure de base" présente les concepts et les termes à connaître pour utiliser Google Cloud. À travers des vidéos et des ateliers pratiques, il décrit et compare la plupart des services Google Cloud de calcul et de stockage, ainsi que des outils importants de gestion des ressources et des règles.
This is the first of five courses in the Google Cloud Cybersecurity Certificate. In this course, you’ll explore the essentials of cybersecurity, including the security lifecycle, digital transformation, and key cloud computing concepts. You’ll identify common tools used by entry-level cloud security analysts to automate tasks.
Take the next steps in working with the Chronicle Security Operations Platform. Build on fundamental knowledge to go deeper on cusotmization and tuning.
This course covers the baseline skills needed for the Google Security Operations Platform. The modules will cover specific actions and features that security engineers should become familiar with to start using the toolset.
This is the fourth of five courses in the Google Cloud Data Analytics Certificate. In this course, you’ll focus on developing skills in the five key stages of visualizing data in the cloud: storytelling, planning, exploring data, building visualizations, and sharing data with others. You’ll also gain experience using UI/UX skills to wireframe impactful, cloud-native visualizations and work with cloud-native data visualization tools to explore datasets, create reports, and build dashboards that drive decisions and foster collaboration.
This is the third of five courses in the Google Cloud Data Analytics Certificate. In this course, you’ll begin by getting an overview of the data journey, from collection to insights. You’ll then learn how to use SQL to transform raw data into a usable format. Next, you’ll learn how to transform high volumes of data with a data pipeline. Finally, you’ll gain experience applying transformation strategies to real data sets to solve business needs.
This is the fifth of five courses in the Google Cloud Data Analytics Certificate. In this course, you’ll combine and apply the foundational knowledge and skills from courses 1-4 in a hands-on Capstone project that focuses on the full data lifecycle project. You’ll practice using cloud-based tools to acquire, store, process, analyze, visualize, and communicate data insights effectively. By the end of the course, you’ll have completed a project demonstrating their proficiency in effectively structuring data from multiple sources, presenting solutions to varied stakeholders, and visualizing data insights using cloud-based software. You’ll also update your resume and practice interview techniques to help prepare for applying and interviewing for jobs.
This is the first of five courses in the Google Cloud Data Analytics Certificate. In this course, you’ll define the field of cloud data analysis and describe roles and responsibilities of a cloud data analyst as they relate to data acquisition, storage, processing, and visualization. You’ll explore the architecture of Google Cloud-based tools, like BigQuery and Cloud Storage, and how they are used to effectively structure, present, and report data.
Les cours Google Cloud Computing Foundations sont destinés aux personnes ayant peu ou pas de connaissances ni d'expérience dans le cloud computing. Ils offrent un aperçu des concepts de base du cloud, du big data et du machine learning, et explique où et comment Google Cloud s'y intègre. À la fin de cette série de cours, les participants seront à même de définir ces concepts et auront acquis des compétences pratiques. Les cours doivent être suivis dans cet ordre : 1. Google Cloud Computing Foundations : principes de base du cloud computing 2. Google Cloud Computing Foundations : infrastructure dans Google Cloud 3. Google Cloud Computing Foundations : mise en réseau et sécurité dans Google Cloud 4. Google Cloud Computing Foundations : données, ML et IA dans Google Cloud Ce dernier cours de la série présente les services de big data gérés, ainsi que le machine learning et sa valeur. Il explique également comment aller plus loin pour démontrer vos compétences dans Google Cloud en o…
Les cours Google Cloud Computing Foundations sont destinés aux personnes ayant peu ou pas de connaissances ni d'expérience dans le cloud computing. Ils offrent un aperçu des concepts de base du cloud, du big data et du machine learning, et explique où et comment Google Cloud s'y intègre. À la fin de cette série de cours, les participants seront à même de définir ces concepts et auront acquis des compétences pratiques. Les cours doivent être suivis dans cet ordre : 1. Google Cloud Computing Foundations : principes de base du cloud computing 2. Google Cloud Computing Foundations : infrastructure dans Google Cloud 3. Google Cloud Computing Foundations : mise en réseau et sécurité dans Google Cloud 4. Google Cloud Computing Foundations : données, ML et IA dans Google Cloud Ce troisième cours aborde les outils d'automatisation et de gestion du cloud, ainsi que la création de réseaux sécurisés.
Les cours Google Cloud Computing Foundations sont destinés aux personnes ayant peu ou pas de connaissances ni d'expérience dans le cloud computing. Ils offrent un aperçu des concepts de base du cloud, du big data et du machine learning, et expliquent où et comment Google Cloud s'y intègre. À la fin de cette série de cours, les participants seront à même de définir ces concepts et auront acquis des compétences pratiques. Les cours doivent être suivis dans cet ordre : 1. Google Cloud Computing Foundations : principes de base du cloud computing 2. Google Cloud Computing Foundations : infrastructure dans Google Cloud 3. Google Cloud Computing Foundations : mise en réseau et sécurité dans Google Cloud 4. Google Cloud Computing Foundations : données, ML et IA dans Google Cloud
Les cours Google Cloud Computing Foundations sont destinés aux personnes ayant peu ou pas de connaissances ni d'expérience dans le cloud computing. Ils offrent un aperçu des concepts de base du cloud, du big data et du machine learning, et expliquent où et comment Google Cloud s'y intègre. À la fin de cette série de cours, les participants seront à même de définir ces concepts et auront acquis des compétences pratiques. Les cours doivent être suivis dans cet ordre : 1. Google Cloud Computing Foundations : principes de base du cloud computing 2. Google Cloud Computing Foundations : infrastructure dans Google Cloud 3. Google Cloud Computing Foundations : mise en réseau et sécurité dans Google Cloud 4. Google Cloud Computing Foundations : données, ML et IA dans Google Cloud Ce premier cours offre une vue d’ensemble du cloud computing, des façons d’utiliser Google Cloud et des différentes options de calcul.
Obtenez un badge de compétence avancé en suivant le cours Utiliser des API de machine learning sur Google Cloud, qui présente les fonctionnalités de base des technologies de machine learning et d'IA suivantes : l'API Cloud Vision, l'API Cloud Translation et l'API Cloud Natural Language.
Le cœur de Contact Center AI est son cœur de conversation, et ses interactions humaines redéfinissent les possibilités de conversations basées sur l'IA. Dans cette mission, vous apprendrez à créer un agent virtuel, à concevoir des flux de conversation votre agent virtuel et ajoutez une passerelle téléphonique à un agent virtuel. Terminez cette quête, y compris le Labo du défi à la fin, pour recevoir un badge numérique exclusif de Google Cloud. Le laboratoire de défi ne fournit pas d'étapes normatives, il nécessite la création de solutions avec un minimum de conseils et testera vos compétences en technologie Google Cloud.
Terminez le cours intermédiaire Créer des modèles de ML avec BigQuery ML pour recevoir un badge démontrant vos compétences dans les domaines suivants : la création et l'évaluation de modèles de machine learning avec BigQuery ML pour générer des prédictions de données.
Obtenez un badge de compétence en terminant le cours intermédiaire Créer et déployer des solutions de machine learning sur Vertex. Vous y apprendrez à utiliser la plate-forme Vertex AI de Google Cloud, AutoML et les services d'entraînement personnalisés pour entraîner, évaluer, régler, expliquer et déployer des modèles de machine learning. Ce cours, qui ouvre droit à un badge de compétence, est destiné aux data scientists et aux ingénieurs en machine learning. Un badge de compétence est un badge numérique exclusif délivré par Google Cloud. Il atteste de votre expertise des produits et services Google Cloud et de votre capacité à mettre en pratique vos connaissances dans un environnement concret et interactif. Terminez ce cours et passez l'évaluation finale de l'atelier challenge pour recevoir un badge de compétence que vous pourrez partager avec votre réseau.
Terminez le cours d'introduction Préparer des données pour les API de ML sur Google Cloud pour recevoir un badge démontrant vos compétences dans les domaines suivants : le nettoyage des données avec Dataprep by Trifacta, l'exécution de pipelines de données dans Dataflow, la création de clusters et l'exécution de jobs Apache Spark dans Dataproc, et l'appel d'API de ML comme l'API Cloud Natural Language, l'API Google Cloud Speech-to-Text et l'API Video Intelligence.
Obtenez un badge de compétence en suivant le cours Créer un réseau Google Cloud sécurisé, dans lequel vous découvrirez plusieurs ressources liées à la mise en réseau permettant de créer, de faire évoluer et de sécuriser vos applications sur Google Cloud.
Suivez le cours Configurer un environnement de développement d'applications sur Google Cloud et obtenez un badge de compétence. Dans ce cours, vous apprendrez à créer et connecter une infrastructure cloud axée sur le stockage à l'aide des fonctionnalités de base des technologies suivantes Cloud Storage, Identity and Access Management, Cloud Functions et Pub/Sub.
Terminez le cours d'introduction Implémenter Cloud Load Balancing pour Compute Engine pour recevoir un badge démontrant vos compétences dans les domaines suivants : Créer et déployer des machines virtuelles dans Compute Engine Configurer des équilibreurs de charge réseau et d'application.