rizky haksono
회원 가입일: 2023
다이아몬드 리그
41696포인트
회원 가입일: 2023
이 과정에서는 Google의 이식 가능한 UI 툴킷인 Flutter를 사용하여 앱을 개발하고, 앱에 Google의 생성형 AI 모델 제품군인 Gemini를 통합하는 방법을 알아봅니다. AI 에이전트와 애플리케이션을 빌드하고 관리할 수 있는 Google 플랫폼인 Vertex AI Agent Builder도 사용해 봅니다.
This on-demand course provides partners the skills required to design, deploy, and monitor Vertail AI Search for Commerce solutions including retail search and recommendation AI for enterprise customers.
This course will teach you how to build conversational experiences for Conversational Agents using Generative Playbooks. You'll start with an introduction to playbooks and learn how to set up your first one. You'll also learn about the importance of testing, as well as key production considerations like quota limits and integration. The course concludes with a case study that shows how to use playbooks for generative steering.
이 과정에서는 Model Armor의 필수 보안 기능을 검토하고 서비스를 사용할 수 있도록 준비합니다. LLM과 관련된 보안 위험과 Model Armor가 AI 애플리케이션을 보호하는 방법을 알아봅니다.
이 과정에서는 Google Cloud의 생성형 AI 기반 파트너인 도구인 Gemini가 클라우드 환경 및 리소스 보호에 어떤 도움이 되는지 알아봅니다. Google Cloud의 환경에 예시 워크로드를 배포하고, Gemini를 이용해 잘못된 보안 구성을 확인 및 해결하는 방법을 배웁니다. 실무형 실습을 통해 Gemini가 클라우드 보안 상황을 어떻게 개선하는지 경험할 수 있습니다. Duet AI의 이름이 Google의 차세대 모델인 Gemini로 변경되었습니다.
Build AI agents that can leverage enterprise databases using the MCP Toolbox for Databases. You will define secure database interaction tools, and implement intelligent querying capabilities (leveraging vector embeddings, structured queries).
이 과정에서는 Google Cloud의 생성형 AI 기반 파트너인 Gemini가 네트워크 엔지니어의 VPC 네트워크 생성, 업데이트, 유지보수에 어떤 도움이 되는지 알아봅니다. Gemini에 프롬프트를 입력하여 검색엔진에서 얻을 수 있는 결과보다 더 구체적인 네트워킹 작업 안내를 얻는 방법을 학습합니다. 실무형 실습을 통해 Gemini로 Google Cloud VPC 네트워크 작업이 얼마나 쉬워지는지 경험할 수 있습니다. Duet AI의 이름이 Google의 차세대 모델인 Gemini로 변경되었습니다.
인공지능(AI)은 혁신적인 가능성을 제공하지만 새로운 보안 문제의 원인이 되기도 합니다. 이 과정에서는 보안 및 데이터 보호 리더가 조직 내에서 AI를 안전하게 관리하는 데 필요한 전략을 살펴봅니다. AI 관련 위험을 사전에 식별 및 완화하고, 민감한 정보를 보호하며, 규정을 준수하고, 복원력 높은 AI 인프라를 빌드하는 프레임워크를 학습합니다. 이러한 전략이 실제 시나리오에서 어떻게 적용되는지 살펴보기 위해 4가지 산업별 사례를 선별했습니다.
이 과정에서는 Google Cloud의 생성형 AI 기반 도우미인 Gemini가 관리자의 인프라 프로비저닝을 어떻게 도와주는지 알아봅니다. 인프라에 관해 설명하고, GKE 클러스터를 배포하고, 기존 인프라를 업데이트하도록 Gemini에 프롬프트를 입력하는 방법을 배울 수 있습니다. 또한 실무형 실습을 통해 Gemini가 GKE 배포 워크플로를 어떻게 개선하는지 경험할 수 있습니다. Duet AI의 이름이 Google의 차세대 모델인 Gemini로 변경되었습니다.
이 과정에서는 AI 기반 검색 기술, 도구, 애플리케이션을 살펴봅니다. 벡터 임베딩을 활용하는 시맨틱 검색, 시맨틱 방식과 키워드 방식을 결합한 하이브리드 검색, 그라운딩된 AI 에이전트로서 AI 할루시네이션을 최소화하는 검색 증강 생성(RAG)에 대해 알아보세요. Vertex AI 벡터 검색을 활용해 지능형 검색 엔진을 빌드하는 실무 경험을 쌓을 수 있습니다.
이 과정에서는 엔지니어가 Google Cloud의 생성형 AI 기반 파트너인 Gemini의 도움을 받아 인프라를 관리하는 방법을 알아봅니다. 애플리케이션 로그를 찾고 이해하며, GKE 클러스터를 생성하고, 빌드 환경을 만드는 방법을 조사하도록 Gemini에 프롬프트를 입력하는 방법을 배울 수 있습니다. 실무형 실습을 통해 Gemini로 DevOps 워크플로가 얼마나 개선되는지 경험할 수 있습니다. Duet AI의 이름이 Google의 차세대 모델인 Gemini로 변경되었습니다.
이 과정에서는 AI 할루시네이션을 완화하는 BigQuery의 검색 증강 생성(RAG) 솔루션을 살펴봅니다. 임베딩 만들기, 벡터 공간 검색, 개선된 응답 생성을 포함한 RAG 워크플로를 소개합니다. 또한 이 과정은 이러한 단계의 배경이 되는 개념을 설명하고 BigQuery를 통한 실질적인 구현 과정을 살펴봅니다. 이 과정을 마친 학습자는 BigQuery와 Gemini 및 임베딩 모델 같은 생성형 AI 모델을 사용하여 자신의 AI 할루시네이션 사용 사례를 해결하는 RAG 파이프라인을 빌드할 수 있게 됩니다.
중급 Security Command Center로 위협과 취약점 완화하기 기술 배지 과정을 완료하여 환경 위협을 예방 및 관리하고, 애플리케이션 취약점을 식별 및 완화하며, 보안 이상에 대응하는 기술 역량을 입증하세요.
중급 Google Cloud에서 Cloud 보안 기본사항 구현하기 기술 배지 과정을 완료하여 Identity and Access Management(IAM)로 역할 생성 및 할당, 서비스 계정 생성 및 관리, 가상 프라이빗 클라우드(VPC) 네트워크에서 비공개 연결 사용 설정, IAP(Identity-Aware Proxy)를 사용한 애플리케이션 액세스 제한, Cloud Key Management Service(KMS)를 사용한 키와 암호화된 데이터 관리, 비공개 Kubernetes 클러스터 생성과 관련된 기술 역량을 입증하세요.
중급 BigQuery ML을 사용한 예측 모델링을 위한 데이터 엔지니어링 기술 배지를 획득하여 Dataprep by Trifact로 데이터 변환 파이프라인을 BigQuery에 빌드, Cloud Storage, Dataflow, BigQuery를 사용한 ETL(추출, 변환, 로드) 워크플로 빌드, BigQuery ML을 사용하여 머신러닝 모델을 빌드하는 기술 역량을 입증할 수 있습니다.
중급 Gemini 모델 기능 향상 기술 배지 과정을 완료하여 코드 생성 및 실행, 그라운딩, 콘텐츠 제어 생성, 합성 데이터 생성을 포함한 Gemini 모델의 고급 기능을 활용해 더 강력하고 정교한 AI 애플리케이션을 빌드하는 기술 역량을 입증할 수 있습니다.
중급 Cloud Run 기반 서버리스 애플리케이션 개발 기술 배지 과정을 완료하여 데이터 관리를 위한 Cloud Run과 Cloud Storage의 통합, Cloud Run 및 Pub/Sub를 사용하는 복원력 높은 비동기 시스템 설계, Cloud Run 기반 REST API 게이트웨이 구축, Cloud Run 기반 서비스 빌드 및 배포와 관련된 기술 역량을 입증하세요.
Cloud Run Functions: 세 가지 활용법 과정을 완료하고 초급 기술 배지를 획득하세요. 이 과정에서는 Google Cloud 콘솔을 통해, 그리고 명령줄에서 Cloud Run Functions를 활용하는 방법을 살펴봅니다.
중급 BigQuery로 멀티모달 벡터 검색 구현하기·기술 배지 과정을 완료하여 BigQuery의 Gemini를 사용해 SQL을 생성 및 디버그하고, 감정 분석을 수행하고, 텍스트를 요약하고 키워드를 식별하고, 임베딩을 생성하고, 검색 증강 생성(RAG) 파이프라인을 만들고, 멀티모달 벡터 검색을 구현하는 기술 역량을 입증해 보세요.
초급 Google Cloud Observability로 모니터링 및 로깅 기술 배지를 획득하여 Compute Engine에서 가상 머신 모니터링, Cloud Monitoring을 활용한 다중 프로젝트 감독, Cloud Functions로 모니터링 및 로깅 기능 확장, 커스텀 애플리케이션 측정항목 생성 및 전송, 커스텀 측정항목을 기반으로 Cloud Monitoring 알림 구성 등의 기술을 입증하세요.
중급 Gemini 및 Streamlit으로 생성형 AI 앱 개발하기 기술 배지 과정을 완료하여 텍스트 생성, Python SDK와 Gemini API를 사용한 함수 호출 적용, Cloud Run으로 Streamlit 애플리케이션 배포 작업과 관련된 기술 역량을 입증하세요. 텍스트 생성을 위해 Gemini에 프롬프트를 입력하는 여러 가지 방법과 Cloud Shell을 사용해 Streamlit 애플리케이션을 테스트하고 반복하는 방법, Streamlit 애플리케이션을 Cloud Run에 배포된 Docker 컨테이너로 패키징하는 방법을 배울 수 있습니다.
초급 Google Cloud의 Monitoring 기술 배지 과정을 완료하여 Cloud Monitoring 도구로 Google Cloud의 리소스를 모니터링하는 기술을 입증할 수 있습니다.
API를 사용하여 Cloud Storage 작업 초급 기술 배지 과정을 완료하여 Cloud Storage 리소스 작업에 Cloud Storage API를 포함한 여러 API를 사용하는 기술을 입증하세요.
Google Cloud에서 Machine Learning API 사용하기 과정을 완료하여 고급 기술 배지를 획득하세요. 이 과정에서는 Cloud Vision API, Cloud Translation API, Cloud Natural Language API와 같은 머신러닝 및 AI 기술의 기본 기능을 알아봅니다.
Unlock the power of generative AI to create intelligent, automated agents. After completing this course, you'll be equipped to develop a data store agent that can instantly answer complex questions by automatically extracting and synthesizing information from your websites, documents, or structured data. Say goodbye to static FAQs—your new agent will provide dynamic, accurate answers and even surface the original source URLs, all with a simple and rapid setup.
This video covers how to use Gemini and Apps Script to automate manual tasks across Google Workspace. You'll learn to prompt Gemini to generate Apps Script code that automatically drafts email reminders in Google Sheets for tasks not marked 'Complete.' Automate your workflow with little to no technical expertise, freeing up time for more important work and eliminating manual follow-ups.
이 과정에서는 데이터-AI 워크플로를 지원하는 AI 기반 기능 모음인 BigQuery의 Gemini에 관해 살펴봅니다. 이러한 기능에는 데이터 탐색 및 준비, 코드 생성 및 문제 해결, 워크플로 탐색 및 시각화 등이 있습니다. 이 과정은 개념 설명, 실제 사용 사례, 실무형 실습을 통해 데이터 실무자가 생산성을 향상하고 개발 파이프라인의 속도를 높이는 데 도움이 됩니다.
중급 Gemini 멀티모달 및 멀티모달 RAG로 리치 문서 검사하기 기술 배지 과정을 완료하여 다음 기술 역량을 입증하세요. 멀티모달 프롬프트를 사용하여 텍스트 및 시각적 데이터에서 정보 추출, 동영상 설명 생성, Gemini의 멀티모달 기능을 사용하여 동영상은 물론 그 밖의 추가 정보 검색, 텍스트와 이미지가 포함된 문서의 메타데이터 구축, 모든 관련 텍스트 청크 가져오기, Gemini의 멀티모달 검색 증강 생성(RAG)을 사용하여 인용 문구 인쇄 등이 있습니다.
Document AI로 데이터 캡처 자동화하기 과정을 완료하고 초급 기술 배지를 획득하세요. 이 과정에서는 Document AI를 사용하여 데이터를 추출, 처리, 캡처하는 방법을 알아봅니다.
이 과정은 BigQuery에서 생성형 AI 작업에 AI/ML 모델을 사용하는 방법을 보여줍니다. 고객 관계 관리와 관련된 실제 사용 사례를 통해 Gemini 모델로 비즈니스 문제를 해결하는 워크플로를 설명합니다. 이해를 돕기 위해 SQL 쿼리와 Python 노트북을 사용하는 코딩 솔루션을 단계별로 안내합니다.
This introductory-level quest shows application developers how the Google Cloud ecosystem could help them build secure, scalable, and intelligent cloud native applications. You learn how to develop and scale applications without setting up infrastructure, run data analytics, gain insights from data, and develop with pre-trained ML APIs to leverage machine learning even if you are not a Machine Learning expert. You will also experience seamless integration between various Google services and APIs to create intelligent apps.
This course demonstrates the power of integrating Google Cloud services and tools with Workspace applications - like using Node.js to build a survey bot, the Natural Language API to recognize sentiment in a Google Doc, and building a chat bot with Apps Script.
이 과정에서는 Google Cloud의 생성형 AI 기반 파트너인 Gemini가 고객 데이터를 분석하고 제품 판매를 예측하는 데 어떤 도움이 되는지 알아봅니다. BigQuery에서 고객 데이터를 사용해 신규 고객을 식별, 분류, 개발하는 방법도 다룹니다. 실무형 실습을 통해 Gemini로 데이터 분석 및 머신러닝 워크플로가 얼마나 개선되는지 경험할 수 있습니다. Duet AI의 이름이 Google의 차세대 모델인 Gemini로 변경되었습니다.
중급 안전한 소프트웨어 배포 기술 배지 과정을 완료하여 DevSecOps 원칙을 통해 소프트웨어 개발 수명 주기(SDLC)에 보안을 선제적으로 통합하는 능숙한 기술을 입증하세요. Google Kubernetes Engine(GKE)과 Cloud Run을 활용하여 컨테이너 이미지를 안전하게 배포하고, 자동화된 취약점 스캔을 구현하여 선제적으로 위험을 식별하고, Artifact Registry로 애플리케이션 개발을 간소화하면서도 보안에 집중하는 방법을 알아봅니다. 또한 강력한 개발 프로세스를 위해 Cloud Build를 통합하고 환경을 세밀하게 제어하기 위해 Admission Control Policies를 구현하는 기술을 습득하게 됩니다.
중급 Vertex AI의 Gemini API로 생성형 AI 살펴보기 기술 배지 과정을 완료하여 텍스트를 생성하고, 향상된 콘텐츠 제작을 위해 이미지 및 동영상을 분석하고, Gemini API 내에서 함수 호출 기법을 적용하는 기술 역량을 입증하세요. 정교한 Gemini 기법을 활용하고, 멀티모달 콘텐츠 생성을 살펴보고, AI 기반 프로젝트의 기능을 확장하는 방법을 알아보세요.
초급 BigLake 데이터 보호 기술 배지 과정을 완료하여 Dataplex 내에서 IAM, BigQuery, BigLake, Data Catalog를 사용해 BigLake 테이블을 만들고 보호하는 기술 역량을 입증하세요.
Google Cloud Compute 기본 퀘스트를 완료하고 기술 배지를 획득하세요. 퀘스트에서는 Compute Engine을 사용하여 가상 머신(VM), 영구 디스크, 웹 서버로 작업하는 방법을 학습합니다.
초급 Sensitive Data Protection 시작하기 기술 배지 과정을 완료하여 Sensitive Data Protection 서비스(Cloud Data Loss Prevention API 포함)를 사용해 Google Cloud의 민감한 정보를 검사, 수정, 익명화하는 기술을 입증할 수 있습니다.
초급 Google Cloud에서 ML API용으로 데이터 준비하기 기술 배지를 완료하여 Dataprep by Trifacta로 데이터 정리, Dataflow에서 데이터 파이프라인 실행, Dataproc에서 클러스터 생성 및 Apache Spark 작업 실행, Cloud Natural Language API, Google Cloud Speech-to-Text API, Video Intelligence API를 포함한 ML API 호출과 관련된 기술 역량을 입증하세요.
Cloud Speech API: 세 가지 활용법 과정을 완료하고 초급 기술 배지를 획득하세요. 이 과정에서는 음성 관련 API 도구를 사용하여 음성을 합성하고 텍스트로 변환하는 방법을 배웁니다.
초급 'Gemini 및 Imagen으로 실제 AI 애플리케이션 빌드하기' 기술 배지 과정을 완료하여, 이미지 인식, 자연어 처리, Google의 강력한 Gemini 및 Imagen 모델을 사용한 이미지 생성, Vertex AI Platform에 애플리케이션 배포 등의 기술을 입증하세요.
초급 Vertex AI의 프롬프트 설계 기술 배지를 완료하여 Vertex AI 내 프롬프트 엔지니어링, 이미지 분석, 멀티모달 생성형 기술과 관련된 기술 역량을 입증하세요. 효과적인 프롬프트를 만들고 생성형 AI 출력을 안내하며 실제 마케팅 분야 시나리오에 Gemini 모델을 적용하는 방법을 알아보세요.
중급 BigQuery ML로 ML 모델 만들기 기술 배지 과정을 완료하면 BigQuery ML로 머신러닝 모델을 만들고 평가하여 데이터 예측을 수행하는 기술 역량을 입증할 수 있습니다.
이 과정에서는 Google Cloud의 생성형 AI 기반 공동작업 도구인 Gemini가 개발자의 애플리케이션 빌드에 어떤 도움이 되는지 알아봅니다. Gemini에 프롬프트를 입력하여 코드에 대한 설명을 얻고 Google Cloud 서비스를 추천받고 애플리케이션의 코드를 생성하는 방법을 배울 수 있습니다. 실무형 실습을 통해 Gemini로 애플리케이션 개발 워크플로가 얼마나 개선되는지 경험할 수 있습니다. Duet AI의 이름이 Google의 차세대 모델인 Gemini로 변경되었습니다.
Google Cloud에서 Gemini 1.0 Pro 모델과 애플리케이션을 통합하는 방법에 대한 이 짧은 과정은 Gemini API 모델과 생성형 AI 모델을 살펴보는 데 도움이 됩니다. 이 과정에서는 코드에서 Gemini 1.0 Pro 모델과 Gemini 1.0 Pro Vision 모델에 액세스하는 방법을 알아봅니다. 앱의 텍스트, 이미지, 동영상 프롬프트로 모델의 기능을 테스트할 수 있습니다.
Business professionals in non-technical roles have a unique opportunity to lead or influence machine learning projects. If you have questions about machine learning and want to understand how to use it, without the technical jargon, this course is for you. Learn how to translate business problems into machine learning use cases and vet them for feasibility and impact. Find out how you can discover unexpected use cases, recognize the phases of an ML project and considerations within each, and gain confidence to propose a custom ML use case to your team or leadership or translate the requirements to a technical team.
Google Cloud 컴퓨팅 기초 과정은 클라우드 컴퓨팅에 대한 배경지식 또는 경험이 거의 없는 개인을 대상으로 합니다. 이 과정은 클라우드 기본사항, 빅데이터, 머신러닝에 대한 핵심 개념을 간략히 설명하고 Google Cloud의 적용 위치 및 방식에 대한 개요를 제공합니다. 일련의 과정을 마친 학습자는 이러한 개념을 명확하게 설명하고 몇 가지 실무 기술 역량을 입증할 수 있게 됩니다. 과정은 다음 순서대로 완료해야 합니다. 1. Google Cloud 컴퓨팅 기초: 클라우드 컴퓨팅 기초 2. Google Cloud 컴퓨팅 기초: Google Cloud의 인프라 3. Google Cloud 컴퓨팅 기초: Google Cloud의 네트워킹 및 보안 4. Google Cloud 컴퓨팅 기초: Google Cloud의 데이터, 머신러닝, AI 이 시리즈의 마지막 과정에서는 관리형 빅데이터 서비스, 머신러닝과 그 가치를 복습하고 기술 배지를 획득하여 Google Cloud 기술 역량을 추가로 입증하는 방법을 살펴봅니다.
생성형 AI 입문자 - Vertex AI 과정은 Google Cloud에서 생성형 AI를 사용하는 방법에 대한 실습으로 이루어져 있습니다. 실습을 통해 다음을 알아봅니다. text-bison, chat-bison, textembedding-gecko을 포함한 Vertex AI PaLM API 제품군에서 모델을 사용하는 방법을 알아봅니다. 프롬프트 설계, 권장사항에 대해 배우고 아이디어 구상, 텍스트 분류, 텍스트 추출, 텍스트 요약 등에 이를 사용하는 방법도 학습합니다. 또한 Vertex AI 커스텀 학습으로 파운데이션 모델을 학습시켜 모델을 조정하는 방법과 Vertex AI 엔드포인트에 배포하는 방법도 알아봅니다.
Using large scale computing power to recognize patterns and "read" images is one of the foundational technologies in AI, from self-driving cars to facial recognition. The Google Cloud Platform provides world class speed and accuracy via systems that can utilized by simply calling APIs. With these and a host of other APIs, GCP has a tool for just about any machine learning job. In this introductory quest, you will get hands-on practice with machine learning as it applies to image processing by taking labs that will enable you to label images, detect faces and landmarks, as well as extract, analyze, and translate text from within images.
모두 알다시피 머신러닝은 빠르게 성장 중인 기술 분야 중 하나입니다. Google Cloud Platform(GCP)은 이러한 발전을 촉진하는 데 중요한 역할을 했습니다. GCP는 다양한 API를 통해 거의 모든 머신러닝 작업에 적합한 도구를 제공합니다. 이 초급 과정에서는 실무형 실습을 통해 머신러닝을 언어 처리에 적용하는 방법을 알아봅니다. 실습에 참여하여 텍스트에서 항목을 추출하고 감정 및 구문 분석을 수행하며 스크립트 작성에 Speech-to-Text API를 사용해 보세요.
빅데이터, 머신러닝, 인공지능은 오늘날 인기 있는 컴퓨팅 관련 주제이지만 매우 전문화된 분야이기 때문에 초급용 자료를 구하기 어렵습니다. 다행히도 Google Cloud는 이러한 분야에서 사용자 친화적인 서비스를 제공하며 초급 과정을 통해 학습자에게 BigQuery, Cloud Speech API, Video Intelligence와 같은 도구를 사용해 시작할 기회를 제공합니다.
중급 BigQuery에서 예측 데이터 분석 수행 기술 배지 과정을 완료하여 CSV 및 JSON 파일을 가져와 BigQuery에서 데이터 세트를 만들고, BigQuery ML을 사용하여 축구 이벤트 데이터로 기대 득점 모델을 학습하고 월드컵 골의 인상도를 평가하는 등 고급 SQL 분석 개념을 갖추고 BigQuery를 활용하는 기술 역량을 입증할 수 있습니다.
Natural Language API를 사용한 감정 분석 퀘스트를 완료하고 기술 배지를 획득하세요. API가 텍스트에서 감정을 추론하는 방법을 배울 수 있습니다.
Cloud Vision API로 이미지 분석 과정을 완료하여 기술 배지를 획득하세요. 이 과정에서는 이미지에서 텍스트를 추출하는 등 다양한 작업에 Cloud Vision API를 활용하는 방법을 알아봅니다.
Google API를 사용한 음성 및 언어 분석 과정을 완료하고 기술 배지를 획득하세요. 이 과정에서는 실제 환경에서 Natural Language API와 Speech API를 사용하는 방법을 알아봅니다.
Earn a skill badge by completing the Detect Manufacturing Defects using Visual Inspection AI course, where you learn how to use Visual Inspection AI to deploy a solution artifact and test that it can successfully identify defects in a manufacturing process.
초급 Looker에서 LookML 객체 빌드 기술 배지 과정을 완료하여 새로운 측정기준 및 측정값, 뷰, 파생 테이블을 빌드하고, 요구사항에 따라 측정 필터 및 유형을 설정하고, 측정기준과 측정값을 업데이트하고, Explore를 빌드 및 미세 조정하고, 기존 Explore에 뷰를 조인하고, 비즈니스 요구사항에 따라 생성할 LookML 객체를 결정하는 기술 역량을 입증할 수 있습니다.
중급 Google Cloud에서 TensorFlow를 사용해 이미지 분류하기 과정을 완료하고 기술 배지를 획득하세요. 이 기술 배지 과정에서는 TensorFlow와 Vertex AI를 사용하여 머신러닝 모델을 만들고 학습시키는 방법을 배웁니다. 주로 Vertex AI Workbench 사용자 관리 노트북과 상호작용합니다.