参加 ログイン

Tran Thien

メンバー加入日: 2024

ゴールドリーグ

17483 ポイント
BigQuery で Gemini モデルを操作する Earned 9月 23, 2025 EDT
Build Custom Processors with Document AI Earned 9月 23, 2025 EDT
Google Cloud での ML の API の使用 Earned 9月 22, 2025 EDT
Modernizing Retail and Ecommerce Solutions with Google Cloud Earned 9月 22, 2025 EDT
Automate Data Capture at Scale with Document AI Earned 9月 22, 2025 EDT
Google Cloud の ML API 用にデータを準備 Earned 9月 22, 2025 EDT
Cloud Speech API: 3 つの方法 Earned 9月 21, 2025 EDT
Google デベロッパー向け基礎 Earned 9月 21, 2025 EDT
BigQuery でマルチモーダル ベクトル検索を実装する Earned 9月 21, 2025 EDT
Gemini でマルチモーダル データを分析し、推論する Earned 9月 20, 2025 EDT
Gemini モデルの機能を強化する Earned 9月 19, 2025 EDT
データ サイエンティストとアナリスト向けの Gemini Earned 9月 19, 2025 EDT
Gemini in BigQuery で生産性を高める Earned 9月 19, 2025 EDT
Gemini と Imagen を使用した実際の AI アプリケーションの構築 Earned 9月 18, 2025 EDT
Vertex AI におけるプロンプト設計 Earned 9月 18, 2025 EDT
Managing Machine Learning Projects with Google Cloud Earned 4月 6, 2024 EDT
Google Cloud Computing Foundations: Data, ML, and AI in Google Cloud Earned 4月 6, 2024 EDT
ML 入門: 画像処理 Earned 4月 6, 2024 EDT
Google Cloud における AI と ML の概要 Earned 4月 5, 2024 EDT
ML 入門: 言語処理 Earned 4月 4, 2024 EDT
ベースライン: データ、ML、AI Earned 4月 4, 2024 EDT
ベースライン: インフラストラクチャ Earned 4月 3, 2024 EDT
Analyze Sentiment with Natural Language API Earned 4月 2, 2024 EDT
Analyze Images with the Cloud Vision API Earned 4月 2, 2024 EDT
Analyze Speech and Language with Google APIs Earned 4月 2, 2024 EDT
Detect Manufacturing Defects Using Visual Inspection AI Earned 4月 2, 2024 EDT
Build LookML Objects in Looker Earned 4月 1, 2024 EDT
Classify Images with TensorFlow on Google Cloud Earned 3月 30, 2024 EDT
Generative AI Explorer - Vertex AI Earned 3月 29, 2024 EDT

このコースでは、BigQuery の生成 AI タスクで AI / ML モデルを使用する方法をご紹介します。顧客管理を含む実際のユースケースを通して、Gemini モデルを使用してビジネス上の問題を解決するワークフローを学びます。また、理解を深めるために、このコースでは SQL クエリと Python ノートブックの両方を使用したコーディング ソリューションの詳細な手順も提供しています。

詳細

Earn a skill badge by completing the Build Custom Processors with Document AI course. You learn how to extract data and classify documents by creating custom ML models specific to your business needs. This course teaches the foundation skills of building your own processors, working with optical character recognition, form parsing, processor creation, and uptraining the DocumentAI model.

詳細

「Google Cloud での ML の API の使用 」コースを修了して、上級スキルバッジを獲得しましょう。このコースでは、ML と AI テクノロジーを活用する 3 つの API(Cloud Vision API、Cloud Translation API、Cloud Natural Language API) の基本機能について学習します。 スキルバッジは、Google Cloud の プロダクトとサービスに関する習熟度を示す Google Cloud 発行の限定デジタルバッジです。 これは、インタラクティブなハンズオン環境での知識の応用力を 証明するものです。このスキルバッジ コースと最終評価チャレンジラボを修了して スキルバッジを獲得し、ネットワークで共有しましょう。

詳細

In this course, you will learn about the various services Google Cloud offers for modernizing retail applications and infrastructure. Through a series of lecture content and hands-on labs, you will gain practical experience deploying cutting-edge retail and ecommerce solutions on Google Cloud.

詳細

Earn the introductory skill badge by completing the Automate Data Capture at Scale with Document AI course. In this course, you learn how to extract, process, and capture data using Document AI.

詳細

「Google Cloud の ML API 用にデータを準備」コースの入門スキルバッジを獲得できるアクティビティを修了すると、 Dataprep by Trifacta を使用したデータのクリーニング、Dataflow でのデータ パイプラインの実行、Dataproc でのクラスタの作成と Apache Spark ジョブの実行、 Cloud Natural Language API、Google Cloud Speech-to-Text API、Video Intelligence API などの ML API の呼び出しに関するスキルを証明できます。

詳細

音声関連の API ツールを使用して、音声の合成と文字起こしを行う方法を学ぶ「Cloud Speech API: 3 つの方法」コースを修了して 初級スキルバッジを獲得しましょう。

詳細

この入門レベルのコースでは、アプリケーション開発者を対象に、Google Cloud のエコシステムを使用して安全、スケーラブル、インテリジェントなクラウドネイティブ アプリケーションを構築する方法を説明 します。インフラストラクチャの設定を行わずにアプリケーションの開発やスケーリングを行う方法、 データ分析を実施する方法、データから分析情報を得る方法、トレーニング済み ML の API を使って開発し、ML のエキスパートでなくても ML を活用する方法を学びます。 また、さまざまな Google サービスや API とのシームレスな統合を利用して、 インテリジェントなアプリを作成します。

詳細

「BigQuery でマルチモーダル ベクトル検索を実装する」スキルバッジを獲得できるこの中級コースを修了すると、 Gemini in BigQuery を使用した SQL の生成とデバッグ、感情分析の実施、 テキストの要約とキーワードの特定、エンベディングの生成、検索拡張生成(RAG)パイプラインの作成、 マルチモーダル ベクトル検索の実装に関するスキルを実証できます。 スキルバッジは、 Google Cloud のプロダクトとサービスの習熟度を示す Google Cloud 発行の限定デジタルバッジで、 インタラクティブなハンズオン環境での知識の応用力を証明するものです。 このスキルバッジ コースと最終評価チャレンジラボを完了し、 デジタルバッジを獲得してネットワークで共有しましょう。

詳細

「Gemini でマルチモーダル データを分析し、推論する」の中級スキルバッジを獲得すると、Gemini 2.0 Flash を使用してテキスト、画像、音声(楽譜として表現)、動画データを分析し、これらの情報の組み合わせで推論を行い、結論を導き出して、分析情報を抽出するスキルを実証できます。

詳細

「Gemini モデルの機能を強化する」の中級スキルバッジを獲得すると、Gemini モデルの高度な機能(コードの生成と実行、グラウンディング、制御されたコンテンツの生成、合成データの作成など)を活用して、より強力で洗練された AI アプリケーションを構築するスキルを実証できます。 スキルバッジは、Google Cloud のプロダクトとサービスの習熟度を示す Google Cloud 発行の限定デジタルバッジです。 インタラクティブなハンズオン環境での知識の応用力を証明するものです。このスキル バッジ コースと最終評価チャレンジラボを修了してスキルバッジを獲得し、 ネットワークで共有しましょう。

詳細

このコースでは、生成 AI を活用した Google Cloud のコラボレーターである Gemini が、顧客データの分析や商品売上の予測にどのように役立つかについて学びます。また、BigQuery で顧客データを使用して、新規顧客を特定、分類、発見する方法も学習します。ハンズオンラボでは、Gemini でデータ分析と ML のワークフローがどのように向上するかを体験します。 Duet AI は、次世代モデルである Gemini に名称変更されました。

詳細

このコースでは、データを AI 活用へつなげるためのワークフローに役立つ AI 搭載の機能スイート、Gemini in BigQuery について説明します。この機能スイートには、データの探索と準備、コード生成とトラブルシューティング、ワークフローの検出と可視化などが含まれます。このコースでは、概念の説明、実際のユースケース、ハンズオンラボを通じて、データ実務者が生産性を高め、開発パイプラインを迅速化できるよう支援します。

詳細

「Gemini と Imagen を使用した実際の AI アプリケーションの構築」入門スキルバッジを取得して、画像認識、自然言語処理、 Google の強力な Gemini モデルと Imagen モデルを使用した画像生成、Vertex AI プラットフォームへのアプリケーションのデプロイなどのスキルを証明しましょう。

詳細

「Vertex AI におけるプロンプト設計」スキルバッジを獲得できる入門コースを修了すると、 Vertex AI のプロンプト エンジニアリング、画像分析、マルチモーダル生成手法のスキルを実証できます。効果的なプロンプトを作成する方法、目的どおりの生成 AI 出力を生成する方法、 Gemini モデルを実際のマーケティング シナリオに適用する方法を学びます。

詳細

Business professionals in non-technical roles have a unique opportunity to lead or influence machine learning projects. If you have questions about machine learning and want to understand how to use it, without the technical jargon, this course is for you. Learn how to translate business problems into machine learning use cases and vet them for feasibility and impact. Find out how you can discover unexpected use cases, recognize the phases of an ML project and considerations within each, and gain confidence to propose a custom ML use case to your team or leadership or translate the requirements to a technical team.

詳細

The Google Cloud Computing Foundations courses are for individuals with little to no background or experience in cloud computing. They provide an overview of concepts central to cloud basics, big data, and machine learning, and where and how Google Cloud fits in. By the end of the series of courses, learners will be able to articulate these concepts and demonstrate some hands-on skills. The courses should be completed in the following order: 1. Google Cloud Computing Foundations: Cloud Computing Fundamentals 2. Google Cloud Computing Foundations: Infrastructure in Google Cloud 3. Google Cloud Computing Foundations: Networking and Security in Google Cloud 4. Google Cloud Computing Foundations: Data, ML, and AI in Google Cloud This final course in the series reviews managed big data services, machine learning and its value, and how to demonstrate your skill set in Google Cloud further by earning Skill Badges.

詳細

大規模なコンピューティング能力を使用してパターンを認識し、 画像を「読み取る」ことは、自動運転車や顔認識に使用される AI の基盤技術の一つです 。 Google Cloud Platform は、 API を呼び出すだけで利用できるシステムを通じて、ワールドクラスの速度と精度を提供します。 こうした機能とさまざまな API を備えた GCP のツールを使えば、 ほぼあらゆる ML ジョブに対応できます。 この入門コースでは、 画像処理に用いられる ML の実践的な演習を行います。 ラボを活用して、画像にラベルを付けたり、顔やランドマークを検出したり、 画像内のテキストを抽出、分析、翻訳したりすることができます。

詳細

このコースでは、予測 AI と生成 AI の両方のプロジェクトを構築できる、Google Cloud の AI および機械学習(ML)サービスについて紹介します。AI の基盤、開発、ソリューションを含むデータから AI へのライフサイクル全体で利用可能なテクノロジー、プロダクト、ツールについて説明するとともに、魅力的な学習体験と実践的なハンズオン演習を通じて、データ サイエンティスト、AI 開発者、ML エンジニアの方々がスキルや知識を強化できるようサポートすることを目指しています。

詳細

ML は、IT 分野で最も急速に成長している技術の一つであり、Google Cloud Platform はその発展に大きく貢献してきました。 Google Cloud では多数の API により、ほぼすべての ML ジョブに対応するツールを提供しています。 この入門コースでは、ラボを通じて言語処理に活用できる ML の実践演習を行います。 これにより、テキストからのエンティティの抽出、 感情分析と構文解析、音声文字変換のための Speech-to-Text API の使用方法を学ぶことができます。

詳細

ビッグデータ、ML、AI は今日のコンピュータ業界ではホットなトピックですが、 これらの分野は非常に専門性が高く、 入門レベルの教材を見つけるのは困難です。幸いなことに、Google Cloud はこうした分野でユーザー フレンドリーなサービスを提供しており、 この入門レベルのコースを通じて、BigQuery、Cloud Speech API、 Video Intelligence などのツールを使い始めるための第一歩を踏み出せます。

詳細

これは、Google Cloud Essentials よりもレベルの高い内容の練習機会を求めている初心者のクラウド デベロッパーに おすすめのコースです。Cloud Storage だけでなく、 Monitoring や Cloud Run functions などの主要なアプリケーション サービスに関連するラボを通して、 実践的な経験を積むことが可能です。また、 あらゆる Google Cloud イニシアチブに応用できる有益なスキルを身に付けることができます。

詳細

Earn a skill badge by completing the Analyze Sentiment with Natural Language API quest, where you learn how the API derives sentiment from text.

詳細

Earn a skill badge by completing the Analyze Images with the Cloud Vision API quest, where you discover how to leverage the Cloud Vision API for various tasks, including extracting text from images.

詳細

Earn a skill badge by completing the Analyze Speech and Language with Google APIs quest, where you learn how to use the Natural Language and Speech APIs in real-world settings.

詳細

Earn a skill badge by completing the Detect Manufacturing Defects using Visual Inspection AI course, where you learn how to use Visual Inspection AI to deploy a solution artifact and test that it can successfully identify defects in a manufacturing process.

詳細

Complete the introductory Build LookML Objects in Looker skill badge course to demonstrate skills in the following: building new dimensions and measures, views, and derived tables; setting measure filters and types based on requirements; updating dimensions and measures; building and refining Explores; joining views to existing Explores; and deciding which LookML objects to create based on business requirements.

詳細

Earn the intermediate Skill Badge by completing the Classify Images with TensorFlow on Google Cloud skill badge course where you learn how to use TensorFlow and Vertex AI to create and train machine learning models. You primarily interact with Vertex AI Workbench user-managed notebooks.

詳細

「Generative AI Explorer - Vertex AI」コースには、 Google Cloud での生成 AI の使用方法に関する複数のラボが含まれます。ラボでは、Vertex AI PaLM API ファミリーの text-bison、chat-bison、 textembedding-gecko などのモデルの使用方法を確認し、プロンプト設計やベスト プラクティス、さらに Vertex AI を活用した アイディエーション、テキスト分類、テキスト抽出、テキスト要約について 学びます。また、 Vertex AI カスタム トレーニングによって基盤モデルをチューニングし、Vertex AI エンドポイントにデプロイする方法も学びます。

詳細