Kleber da Silva
회원 가입일: 2024
골드 리그
26320포인트
회원 가입일: 2024
Google Cloud 데이터 애널리틱스 자격증의 5개 과정 중 첫 번째 과정입니다. 이 과정에서는 클라우드 데이터 분석의 분야를 정의하고 데이터 획득, 저장, 처리, 시각화와 관련된 클라우드 데이터 분석가의 역할과 책임을 설명합니다. BigQuery, Cloud Storage와 같은 Google Cloud 기반 도구의 아키텍처와 이러한 도구를 사용하여 데이터를 효과적으로 구조화하여 표시하고 보고하는 방법을 살펴봅니다.
Google Cloud 데이터 애널리틱스 자격증의 5개 과정 중 네 번째 과정입니다. 이 과정에서 학습자는 클라우드에서 데이터를 시각화하는 5가지 핵심 단계(스토리텔링, 계획, 데이터 탐색, 시각화 구축, 다른 사람과의 데이터 공유)와 관련된 기술을 개발하는 데 중점을 둡니다. 또한 UI/UX 기술을 사용하여 효과적인 클라우드 네이티브 시각화를 와이어프레임으로 제작하고 클라우드 네이티브 데이터 시각화 도구를 사용하여 데이터 세트를 탐색하고, 보고서를 작성할 뿐 아니라 의사 결정 및 협업을 촉진하는 대시보드를 빌드하는 경험을 쌓을 수 있습니다.
Google Cloud 데이터 애널리틱스 자격증의 5개 과정 중 두 번째 과정입니다. 이 과정에서는 데이터를 어떻게 구조화하고 조직화하는지 살펴봅니다. 데이터 레이크하우스 아키텍처 및 BigQuery, Google Cloud Storage, Dataproc과 같은 클라우드 구성요소를 활용하여 대규모 데이터 세트를 효율적으로 저장, 분석, 처리하는 방법을 직접 경험해 봅니다.
This is the third of five courses in the Google Cloud Data Analytics Certificate. In this course, you’ll begin by getting an overview of the data journey, from collection to insights. You’ll then learn how to use SQL to transform raw data into a usable format. Next, you’ll learn how to transform high volumes of data with a data pipeline. Finally, you’ll gain experience applying transformation strategies to real data sets to solve business needs.
Google Cloud 데이터 애널리틱스 자격증의 5개 과정 중 다섯 번째 과정입니다. 이 과정에서는 전체 데이터 수명 주기 프로젝트에 중점을 둔 실습형 캡스톤 프로젝트의 1~4번째 과정에서 배운 기초 지식과 기술을 종합하여 적용합니다. 클라우드 기반 도구를 사용하여 데이터 인사이트를 효과적으로 확보, 저장, 처리, 분석, 시각화, 전달하는 방법을 실습합니다. 과정을 마치면 학습자는 여러 소스의 데이터를 효과적으로 구조화하고, 다양한 이해관계자에게 솔루션을 제시하고, 클라우드 기반 소프트웨어를 사용하여 데이터 인사이트를 시각화하는 역량을 보여주는 프로젝트를 완료하게 됩니다. 또한 이력서를 업데이트하고 면접 기법을 연습하면서 입사 지원 및 면접을 준비합니다.
This is the fifth of five courses in the Google Cloud Data Analytics Certificate. In this course, you’ll combine and apply the foundational knowledge and skills from courses 1-4 in a hands-on Capstone project that focuses on the full data lifecycle project. You’ll practice using cloud-based tools to acquire, store, process, analyze, visualize, and communicate data insights effectively. By the end of the course, you’ll have completed a project demonstrating their proficiency in effectively structuring data from multiple sources, presenting solutions to varied stakeholders, and visualizing data insights using cloud-based software. You’ll also update your resume and practice interview techniques to help prepare for applying and interviewing for jobs.
This is the third of five courses in the Google Cloud Data Analytics Certificate. In this course, you’ll begin by getting an overview of the data journey, from collection to insights. You’ll then learn how to use SQL to transform raw data into a usable format. Next, you’ll learn how to transform high volumes of data with a data pipeline. Finally, you’ll gain experience applying transformation strategies to real data sets to solve business needs.
This is the second of five courses in the Google Cloud Data Analytics Certificate. In this course, you’ll explore how data is structured and organized. You’ll gain hands-on experience with the data lakehouse architecture and cloud components like BigQuery, Google Cloud Storage, and DataProc to efficiently store, analyze, and process large datasets.
This is the fourth of five courses in the Google Cloud Data Analytics Certificate. In this course, you’ll focus on developing skills in the five key stages of visualizing data in the cloud: storytelling, planning, exploring data, building visualizations, and sharing data with others. You’ll also gain experience using UI/UX skills to wireframe impactful, cloud-native visualizations and work with cloud-native data visualization tools to explore datasets, create reports, and build dashboards that drive decisions and foster collaboration.
Cloud technology on its own only provides a fraction of the true value to a business; When combined with data–lots and lots of it–it has the power to truly unlock value and create new experiences for customers. In this course, you'll learn what data is, historical ways companies have used it to make decisions, and why it is so critical for machine learning. This course also introduces learners to technical concepts such as structured and unstructured data. database, data warehouse, and data lakes. It then covers the most common and fastest growing Google Cloud products around data.
This is the first of five courses in the Google Cloud Data Analytics Certificate. In this course, you’ll define the field of cloud data analysis and describe roles and responsibilities of a cloud data analyst as they relate to data acquisition, storage, processing, and visualization. You’ll explore the architecture of Google Cloud-based tools, like BigQuery and Cloud Storage, and how they are used to effectively structure, present, and report data.
초급 Google Cloud에서 ML API용으로 데이터 준비하기 기술 배지를 완료하여 Dataprep by Trifacta로 데이터 정리, Dataflow에서 데이터 파이프라인 실행, Dataproc에서 클러스터 생성 및 Apache Spark 작업 실행, Cloud Natural Language API, Google Cloud Speech-to-Text API, Video Intelligence API를 포함한 ML API 호출과 관련된 기술 역량을 입증하세요.
안전한 Google Cloud 네트워크 빌드 과정을 완료하여 기술 배지를 획득하세요. 이 과정에서는 Google Cloud에서 애플리케이션을 빌드, 확장, 보호하는 데 필요한 다양한 네트워킹 관련 리소스에 대해 배울 수 있습니다.
Google Cloud 앱 개발 환경 설정 과정을 완료하여 기술 배지를 획득하세요. Cloud Storage, Identity and Access Management, Cloud Functions, Pub/Sub의 기본 기능을 사용하여 스토리지 중심 클라우드 인프라를 구축하고 연결하는 방법을 배울 수 있습니다.
초급 Compute Engine에서 Cloud Load Balancing 구현하기 기술 배지 과정을 완료하여 Compute Engine에서 가상 머신 만들기 및 배포, 네트워크 및 애플리케이션 부하 분산기 구성과 관련된 기술 역량을 입증하세요.
Google Cloud 컴퓨팅 기초 과정은 클라우드 컴퓨팅에 대한 배경지식 또는 경험이 거의 없는 개인을 대상으로 합니다. 이 과정은 클라우드 기본사항, 빅데이터, 머신러닝에 대한 핵심 개념을 간략히 설명하고 Google Cloud의 적용 위치 및 방식에 대한 개요를 제공합니다. 일련의 과정을 마친 학습자는 이러한 개념을 명확하게 설명하고 몇 가지 실무 기술 역량을 입증할 수 있게 됩니다. 과정은 다음 순서대로 완료해야 합니다. 1. Google Cloud 컴퓨팅 기초: 클라우드 컴퓨팅 기초 2. Google Cloud 컴퓨팅 기초: Google Cloud의 인프라 3. Google Cloud 컴퓨팅 기초: Google Cloud의 네트워킹 및 보안 4. Google Cloud 컴퓨팅 기초: Google Cloud의 데이터, 머신러닝, AI 이 시리즈의 마지막 과정에서는 관리형 빅데이터 서비스, 머신러닝과 그 가치를 복습하고 기술 배지를 획득하여 Google Cloud 기술 역량을 추가로 입증하는 방법을 살펴봅니다.
Google Cloud 컴퓨팅 기초 과정은 클라우드 컴퓨팅에 대한 배경 지식 또는 경험이 거의 없는 개인을 대상으로 합니다. 이 과정은 클라우드 기본사항, 빅데이터, 머신러닝에 대한 핵심 개념을 간략히 설명하고 Google Cloud의 적용 위치 및 방식에 대한 개요를 제공합니다. 일련의 과정을 마친 학습자는 이러한 개념을 명확하게 설명하고 몇 가지 실무 기술 역량을 입증할 수 있게 됩니다. 다음 순서대로 과정을 완료해야 합니다. 1. Google Cloud 컴퓨팅 기초: 클라우드 컴퓨팅 기초 2. Google Cloud 컴퓨팅 기초: Google Cloud의 인프라 3. Google Cloud 컴퓨팅 기초: Google Cloud의 네트워킹 및 보안 4. Google 클라우드 컴퓨팅 기초: Google Cloud의 데이터, 머신러닝, AI 이 세 번째 과정에서는 클라우드 자동화 및 관리 도구와 안전한 네트워크 구축에 대해 다룹니다.
Google Cloud 컴퓨팅 기초 과정은 클라우드 컴퓨팅에 대한 배경지식 또는 경험이 거의 없는 개인을 대상으로 합니다. 이 과정은 클라우드 기본사항, 빅데이터, 머신러닝에 대한 핵심 개념을 간략히 설명하고 Google Cloud의 적용 위치 및 방식에 대한 개요를 제공합니다. 일련의 과정을 마친 학습자는 이러한 개념을 명확하게 설명하고 몇 가지 실무 기술 역량을 입증할 수 있게 됩니다. 과정은 다음 순서대로 완료해야 합니다. 1. Google Cloud 컴퓨팅 기초: 클라우드 컴퓨팅 기초 2. Google Cloud 컴퓨팅 기초: Google Cloud의 인프라 3. Google Cloud 컴퓨팅 기초: Google Cloud의 네트워킹 및 보안 4. Google Cloud 컴퓨팅 기초: Google Cloud의 데이터, 머신러닝, AI
Google Cloud 컴퓨팅 기초 과정은 클라우드 컴퓨팅에 대한 배경지식 또는 경험이 거의 없는 개인을 대상으로 합니다. 이 과정은 클라우드 기본사항, 빅데이터, 머신러닝에 대한 핵심 개념을 간략히 설명하고 Google Cloud의 적용 위치 및 방식에 대한 개요를 제공합니다. 일련의 과정을 마친 학습자는 이러한 개념을 명확하게 설명하고 몇 가지 실무 기술 역량을 입증할 수 있게 됩니다. 과정은 다음 순서대로 완료해야 합니다. 1. Google Cloud 컴퓨팅 기초: 클라우드 컴퓨팅 기초 2. Google Cloud 컴퓨팅 기초: Google Cloud의 인프라 3. Google Cloud 컴퓨팅 기초: Google Cloud의 네트워킹 및 보안 4. Google Cloud 컴퓨팅 기초: Google Cloud의 데이터, 머신러닝, AI 첫 번째 과정에서는 클라우드 컴퓨팅, Google Cloud 사용 방법, 다양한 컴퓨팅 옵션에 대한 개요를 제공합니다.