Rejoindre Se connecter

Avirup Aditya

Date d'abonnement : 2019

Ligue d'Argent

4400 points
Déployer des applications Kubernetes sur Google Cloud Earned nov. 16, 2020 EST
Surveiller et journaliser avec Google Cloud Observability Earned nov. 16, 2020 EST
Préparer des données pour les API de ML sur Google Cloud Earned nov. 15, 2020 EST
[DEPRECATED] Build Interactive Apps with Google Assistant Earned nov. 13, 2020 EST
DEPRECATED BigQuery Basics for Data Analysts Earned sept. 17, 2020 EDT
NCAA® March Madness®: Bracketology with Google Cloud Earned sept. 13, 2020 EDT
Automatiser le déploiement et gérer le trafic sur un réseau Google Cloud Earned sept. 10, 2020 EDT
[DEPRECATED] OK Google: Build Interactive Apps with Google Assistant Earned sept. 6, 2020 EDT
Les bases du développement avec Google Earned sept. 4, 2020 EDT
Référence : infrastructure Earned sept. 3, 2020 EDT
API d'apprentissage automatique Earned oct. 25, 2019 EDT
Intermediate ML: TensorFlow on Google Cloud Earned oct. 19, 2019 EDT
BigQuery pour le machine learning Earned oct. 7, 2019 EDT
Intro au ML : traitement du langage Earned oct. 6, 2019 EDT
Bases : Données, ML, IA Earned oct. 5, 2019 EDT
Google Cloud Essentials Earned sept. 25, 2019 EDT

Terminez le cours intermédiaire Déployer des applications Kubernetes sur Google Cloud pour recevoir un badge démontrant vos compétences dans les domaines suivants : la configuration et la création d'images de conteneur Docker, la création et la gestion de clusters Google Kubernetes Engine (GKE), l'utilisation de kubectl pour gérer efficacement les clusters et le déploiement d'applications Kubernetes en appliquant des pratiques de livraison continue (CD) robustes.

En savoir plus

Terminez le cours d'introduction Surveiller et journaliser avec Google Cloud Observability pour recevoir un badge démontrant vos compétences dans les domaines suivants : la surveillance des machines virtuelles dans Compute Engine, l'utilisation de Cloud Monitoring pour la supervision multiprojet, l'extension des fonctionnalités de surveillance et de journalisation à Cloud Functions, la création et l'envoi de métriques d'application personnalisées, et la configuration d'alertes Cloud Monitoring en fonction de ces métriques personnalisées.

En savoir plus

Terminez le cours d'introduction Préparer des données pour les API de ML sur Google Cloud pour recevoir un badge démontrant vos compétences dans les domaines suivants : le nettoyage des données avec Dataprep by Trifacta, l'exécution de pipelines de données dans Dataflow, la création de clusters et l'exécution de jobs Apache Spark dans Dataproc, et l'appel d'API de ML comme l'API Cloud Natural Language, l'API Google Cloud Speech-to-Text et l'API Video Intelligence.

En savoir plus

Earn a skill badge by completing the Build Interactive Apps with Google Assistant quest, where you will learn how to build Google Assistant applications, including how to: create an Actions project, integrate Dialogflow with an Actions project, test your application with Actions simulator, build an Assistant application with flash cards template, integrate customer MP3 files with your Assistant application, add Cloud Translation API to your Assistant application, and use APIs and integrate them into your applications. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete the skill badge quest, and final assessment challenge lab, to receive a digital badge that you can share with your network.

En savoir plus

Want to scale your data analysis efforts without managing database hardware? Learn the best practices for querying and getting insights from your data warehouse with this interactive series of BigQuery labs. BigQuery is Google's fully managed, NoOps, low cost analytics database. With BigQuery you can query terabytes and terabytes of data without having any infrastructure to manage or needing a database administrator. BigQuery uses SQL and can take advantage of the pay-as-you-go model. BigQuery allows you to focus on analyzing data to find meaningful insights.

En savoir plus

In this series of labs you will learn how to use BigQuery to analyze NCAA basketball data with SQL. Build a Machine Learning Model to predict the outcomes of NCAA March Madness basketball tournament games.

En savoir plus

La gestion des réseaux est l'un des aspects les plus importants du cloud computing. Il s'agit de la structure sous-jacente de Google Cloud, qui relie l'ensemble de vos ressources et services entre eux. Ce cours aborde les services de gestion des réseaux essentiels de Google Cloud et vous permet de vous familiariser avec des outils spécialisés dans le développement de réseaux matures grâce à des ateliers pratiques. De la découverte des tenants et aboutissants des VPC à la création d'équilibreurs de charge professionnels, Automatiser le déploiement et gérer le trafic sur un réseau Google Cloud vous permettra d'acquérir l'expérience pratique nécessaire pour développer des réseaux robustes.

En savoir plus

With Google Assistant part of over a billion consumer devices, this quest teaches you how to build practical Google Assistant applications integrated with Google Cloud services via APIs. Example apps will use the Dialogflow conversational suite and the Actions and Cloud Functions frameworks. You will build 5 different applications that explore useful and fun tools you can extend on your own. No hardware required! These labs use the cloud-based Google Assistant simulator environment for developing and testing, but if you do have your own device, such as a Google Home or a Google Hub, additional instructions are provided on how to deploy your apps to your own hardware.

En savoir plus

Ce cours d'introduction explique aux développeurs d'applications comment l'écosystème de Google Cloud peut les aider à créer des applications cloud natives sécurisées, évolutives et intelligentes. Vous apprendrez à créer et à faire évoluer des applications sans configurer d'infrastructure, à exécuter des analyses de données, à dégager des insights à partir de données, et à utiliser des API de ML pré-entraînées pour tirer parti du machine learning, même si vous n'êtes pas un expert en la matière. Vous découvrirez également l'intégration parfaite de divers services et API de Google afin de créer des applications intelligentes.

En savoir plus

Si vous êtes un développeur cloud débutant et recherchez des exercices pratiques plus poussés au-delà des bases de Google Cloud, ce cours est fait pour vous. Il vous permettra d'acquérir de l'expérience pratique grâce aux ateliers qui traitent en profondeur de Cloud Storage et d'autres services applicatifs clés tels que Monitoring et Cloud Functions. Vous développerez des compétences précieuses que vous pourrez utiliser dans tous vos projets Google Cloud.

En savoir plus

Il n'a échappé à personne que le machine learning est une technologie très dynamique, et Google Cloud Platform a joué un rôle déterminant dans son développement. Doté d'une multitude d'API.

En savoir plus

TensorFlow is an open source software library for high performance numerical computation that's great for writing models that can train and run on platforms ranging from your laptop to a fleet of servers in the Cloud to an edge device. This quest takes you beyond the basics of using predefined models and teaches you how to build, train and deploy your own on Google Cloud.

En savoir plus

Créer des modèles de machine learning en quelques minutes au lieu de plusieurs heures grâce à SQL, ça vous intéresse ? BigQuery ML démocratise le machine learning en permettant aux analystes de données de créer, d'entraîner et d'évaluer des modèles de ML, puis de les utiliser pour faire des prédictions, en s'appuyant sur leurs outils SQL et leurs connaissances actuelles dans ce langage. Dans cette série d'ateliers, vous allez essayer différents types de modèles et apprendre ce qui caractérise un bon modèle.

En savoir plus

Il n'a échappé à personne que le machine learning est une technologie très dynamique, et Google Cloud Platform a joué un rôle déterminant dans son développement. Doté d'une multitude d'API, GCP propose un outil pour pratiquement toutes les tâches de machine learning. Avec ce cours d'introduction, vous allez vous familiariser avec le machine learning et son application au traitement du langage. Au cours de divers ateliers, vous allez extraire des entités à partir de texte, effectuer une analyse des sentiments et de la syntaxe, ainsi que transcrire du contenu audio avec l'API Speech-to-Text.

En savoir plus

Aujourd'hui, le big data, le machine learning et l'intelligence artificielle sont des thèmes en vogue dans le domaine de l'informatique. Ce sont toutefois des disciplines pointues, pour lesquelles il n'est pas toujours simple de trouver des documents de référence. Heureusement, Google Cloud propose des services conviviaux dédiés, ainsi que ce cours d'introduction, pour vous aider à faire vos premiers pas avec des outils comme BigQuery, l'API Cloud Speech et Video Intelligence.

En savoir plus

Cette quête d'introduction se compose d'ateliers pratiques qui vous permettent de vous familiariser avec les outils et services de base de Google Cloud Platform. "GCP Essentials" est la première quête recommandée pour les personnes s'intéressant à Google Cloud. Vous pouvez la suivre sans aucune connaissance (ou presque) du cloud et, une fois la quête terminée, vous disposerez de compétences pratiques qui vous seront utiles pour n'importe quel projet GCP. De l'écriture de lignes de commande Cloud Shell au déploiement de votre première machine virtuelle en passant par l'exécution d'applications sur Kubernetes Engine avec l'équilibrage de charge, "GCP Essentials" constitue une excellente introduction aux fonctionnalités de base de la plate-forme. Des vidéos d'une minute résument les concepts clés de ces ateliers.

En savoir plus