Lapuz Michael
メンバー加入日: 2024
ダイヤモンド リーグ
50135 ポイント
メンバー加入日: 2024
これは、「Google Cloud サイバーセキュリティ認定証」プログラムの 5 つのコースのうちの 1 つ目です。このコースでは、セキュリティ ライフサイクル、デジタル トランスフォーメーション、クラウド コンピューティングの主要なコンセプトなど、サイバーセキュリティの基本を学びます。エントリーレベルのクラウド セキュリティ アナリストがタスクを自動化するために使用する一般的なツールを特定します。
これは、「Google Cloud サイバーセキュリティ認定証」プログラムの 5 つのコースのうちの 2 つ目です。このコースでは、広く使用されているクラウド リスク管理フレームワークについて学習し、セキュリティ ドメイン、コンプライアンス ライフサイクル、HIPAA、NIST CSF、SOC などの業界標準について確認します。リスクの特定、セキュリティ管理の実装、コンプライアンス評価、データ保護管理のスキルを身につけます。さらに、リスクとコンプライアンスに特化した Google Cloud ツールとマルチクラウド ツールを実際に使用する経験も積むことができます。また、就職活動や面接の準備に関するテクニックも取り入れ、クラウド リスク管理の複雑な状況を理解し、効果的に対処するための包括的な基礎を提供します。
これは、「Google Cloud サイバーセキュリティ認定証」プログラムの 5 つのコースのうちの 3 つ目です。このコースでは、クラウド環境における ID 管理とアクセス制御の原則について説明します。AAA(認証、認可、監査)、認証情報の処理、証明書の管理などの重要な要素を取り上げます。また、脅威と脆弱性の管理、クラウドネイティブの原則、データ保護対策といった重要なトピックについても学びます。このコースを修了すると、クラウドベースのリソースを保護し、組織の機密情報を守るために必要なスキルと知識を身につけることができます。さらに、キャリア リソースを活用し、面接のテクニックを磨きながら、プロフェッショナルとしての次のキャリア ステップに備えます。
これは、「Google Cloud サイバーセキュリティ認定証」プログラムの 5 つのコースのうちの 5 つ目です。このコースでは、クラウド セキュリティの原則、リスク管理、脆弱性の特定、インシデント管理、危機管理コミュニケーションなどの重要なコンセプトを組み合わせて適用する、インタラクティブな集大成プロジェクトに取り組みます。また、履歴書の最終更新を行い、新しい面接テクニックを駆使して、この分野の就職活動や面接に自信を持って臨めるようにします。
これは、「Google Cloud サイバーセキュリティ認定証」プログラムの 5 つのコースのうちの 4 つ目です。このコースでは、ロギング、セキュリティ、アラートのモニタリングの機能と、攻撃を軽減する手法の開発に重点を置いて説明します。脅威フィードのカスタマイズ、インシデント管理、危機管理コミュニケーション、根本原因分析、インシデント対応、イベント後のコミュニケーションに関する貴重な知識を習得できます。Google Cloud ツールを使用して、セキュリティ侵害インジケーターを特定し、ビジネスの継続性と障害復旧に備える方法も学びます。これらの技術スキルに加えて、履歴書の更新や面接のテクニックの練習も行います。
これは、5 つのコースからなる「Google Cloud データ アナリティクス認定証」プログラムの 5 つ目のコースです。このコースでは、コース 1~4 で学んだ基礎知識とスキルを組み合わせて応用することで、データ ライフサイクル全体に焦点を当てたハンズオン キャップストーン プロジェクトに取り組みます。クラウドベースのツールを使用して、データの分析情報を効果的に取得、保存、処理、分析、可視化し、明確に伝えるための実践を行います。このコースの終了までに、プロジェクトを完了し、複数のソースから得られたデータを効果的に構造化して、さまざまな関係者にソリューションを提示し、クラウドベースのソフトウェアを使用してデータ分析情報を可視化する能力を実証します。また、履歴書を更新し、面接の練習を行って、就職活動や面接に備えることができます。
これは、「Google Cloud データ アナリティクス認定証」プログラムを構成する 5 つのコースのうちの 4 つ目です。このコースでは、クラウドでのデータ可視化における 5 つの主要な段階(ストーリーテリング、計画、データ探索、ビジュアリゼーションの構築、他のユーザーとのデータ共有)のスキルを開発することに重点を置いています。さらに、UI / UX スキルを使用して、クラウドネイティブで効果的な可視化のワイヤーフレームを実際に作成するとともに、クラウドネイティブのデータ可視化ツールを使用して、データセットの探索、レポートの作成のほか、意思決定とコラボレーションを促進するダッシュボードの構築を行います。
This is the third of five courses in the Google Cloud Data Analytics Certificate. In this course, you’ll begin by getting an overview of the data journey, from collection to insights. You’ll then learn how to use SQL to transform raw data into a usable format. Next, you’ll learn how to transform high volumes of data with a data pipeline. Finally, you’ll gain experience applying transformation strategies to real data sets to solve business needs.
これは、「Google Cloud データ アナリティクス認定証」の 5 つのコースのうちの 2 つ目です。このコースでは、データの構造化および整理の方法を確認します。また、BigQuery、Google Cloud Storage、DataProc などのデータ レイクハウス アーキテクチャやクラウド コンポーネントについて実践的な経験を積み、大規模なデータセットを効率的に保存、分析、処理できるようになります。
これは、5 つのコースからなる「Google Cloud データ アナリティクス認定証」プログラムの 1 つ目のコースです。このコースでは、クラウドデータ分析とは何かについて、そしてデータの取得、保存、処理、可視化に関連するクラウド データ アナリストの役割と責任について学びます。受講者は、Google Cloud ベースのツール(BigQuery や Cloud Storage など)のアーキテクチャと、それらを使用してデータを効果的に整理、提示し、レポートを作成する方法を確認します。
This is the fourth of five courses in the Google Cloud Cybersecurity Certificate. In this course, you’ll focus on developing capabilities in logging, security, and alert monitoring, along with techniques for mitigating attacks. You'll gain valuable knowledge in customizing threat feeds, managing incidents, handling crisis communications, conducting root cause analysis, and mastering incident response and post-event communications. Using Google Cloud tools, you'll learn to identify indicators of compromise and prepare for business continuity and disaster recovery. Alongside these technical skills, you'll continue updating your resume and practicing interview techniques.
This is the fifth of five courses in the Google Cloud Cybersecurity Certificate. In this course, you’ll combine and apply key concepts such as cloud security principles, risk management, identifying vulnerabilities, incident management, and crisis communications in an interactive capstone project. Additionally, you'll finalize your resume updates and put to practice all the new interview techniques you've learned, preparing you to confidently apply for and interview for jobs in the field.
This is the third of five courses in the Google Cloud Cybersecurity Certificate. In this course, you’ll explore the principles of identity management and access control within a cloud environment, covering key elements like AAA (Authentication, Authorization, and Auditing), credential handling, and certificate management. You'll also explore essential topics in threat and vulnerability management, cloud-native principles, and data protection measures. Upon completing this course, you will have acquired the skills and knowledge necessary to secure cloud-based resources and safeguard sensitive organizational information. Additionally, you'll continue to engage with career resources and hone your interview techniques, preparing you for the next step in your professional journey.
This is the second of five courses in the Google Cloud Cybersecurity Certificate. In this course, you’ll explore widely-used cloud risk management frameworks, exploring security domains, compliance lifecycles, and industry standards such as HIPAA, NIST CSF, and SOC. You'll develop skills in risk identification, implementation of security controls, compliance evaluation, and data protection management. Additionally, you'll gain hands-on experience with Google Cloud and multi-cloud tools specific to risk and compliance. This course also incorporates job application and interview preparation techniques, offering a comprehensive foundation to understand and effectively navigate the complex landscape of cloud risk management.
This is the first of five courses in the Google Cloud Cybersecurity Certificate. In this course, you’ll explore the essentials of cybersecurity, including the security lifecycle, digital transformation, and key cloud computing concepts. You’ll identify common tools used by entry-level cloud security analysts to automate tasks.
This is the fourth of five courses in the Google Cloud Data Analytics Certificate. In this course, you’ll focus on developing skills in the five key stages of visualizing data in the cloud: storytelling, planning, exploring data, building visualizations, and sharing data with others. You’ll also gain experience using UI/UX skills to wireframe impactful, cloud-native visualizations and work with cloud-native data visualization tools to explore datasets, create reports, and build dashboards that drive decisions and foster collaboration.
This is the fifth of five courses in the Google Cloud Data Analytics Certificate. In this course, you’ll combine and apply the foundational knowledge and skills from courses 1-4 in a hands-on Capstone project that focuses on the full data lifecycle project. You’ll practice using cloud-based tools to acquire, store, process, analyze, visualize, and communicate data insights effectively. By the end of the course, you’ll have completed a project demonstrating their proficiency in effectively structuring data from multiple sources, presenting solutions to varied stakeholders, and visualizing data insights using cloud-based software. You’ll also update your resume and practice interview techniques to help prepare for applying and interviewing for jobs.
This is the third of five courses in the Google Cloud Data Analytics Certificate. In this course, you’ll begin by getting an overview of the data journey, from collection to insights. You’ll then learn how to use SQL to transform raw data into a usable format. Next, you’ll learn how to transform high volumes of data with a data pipeline. Finally, you’ll gain experience applying transformation strategies to real data sets to solve business needs.
This is the second of five courses in the Google Cloud Data Analytics Certificate. In this course, you’ll explore how data is structured and organized. You’ll gain hands-on experience with the data lakehouse architecture and cloud components like BigQuery, Google Cloud Storage, and DataProc to efficiently store, analyze, and process large datasets.
「Vertex AI におけるプロンプト設計」スキルバッジを獲得できる入門コースを修了すると、 Vertex AI のプロンプト エンジニアリング、画像分析、マルチモーダル生成手法のスキルを実証できます。効果的なプロンプトを作成する方法、目的どおりの生成 AI 出力を生成する方法、 Gemini モデルを実際のマーケティング シナリオに適用する方法を学びます。
This is the first of five courses in the Google Cloud Data Analytics Certificate. In this course, you’ll define the field of cloud data analysis and describe roles and responsibilities of a cloud data analyst as they relate to data acquisition, storage, processing, and visualization. You’ll explore the architecture of Google Cloud-based tools, like BigQuery and Cloud Storage, and how they are used to effectively structure, present, and report data.
このコースは、大規模言語モデル(LLM)とは何か、どのようなユースケースで活用できるのか、プロンプトのチューニングで LLM のパフォーマンスを高めるにはどうすればよいかについて学習する、入門レベルのマイクロ ラーニング コースです。独自の生成 AI アプリを開発する際に利用できる Google ツールも紹介します。
クラウド テクノロジーとデジタル トランスフォーメーションに大きな期待が寄せられていますが、疑問点も多く残っています。 例: クラウド テクノロジーとは何か?デジタル トランスフォーメーションとは何を意味しているか?クラウド テクノロジーが組織にどう役立つのか?どこから着手するのか? このような疑問をお持ちなら、このコースはぴったりです。このコースでは、デジタル トランスフォーメーションにおいて多くの企業が直面する機会と課題のタイプについてご説明します。このデジタル トランスフォーメーションの入門コースなら、クラウド テクノロジーに関する知識を深めて自分の業務に活用するとともに、今後のビジネスの成長にも役立てていただけます。このコースは クラウド デジタル リーダー 学習プログラムの一部です。
Moving to the cloud creates numerous opportunities to start working in a new way and it empowers the workforce to better collaborate and innovate. But it’s also a big change. Sometimes the success of the change hinges not on the change itself, but on how it’s managed. This course will help people managers to understand some of the key challenges associated with cloud adoption, and provide them with a verified in-the-field framework that will assist them in supporting their teams on the change journey. By addressing the human factor of moving to the cloud, organizations increase their chances of realizing business objectives and investing in their future talent.
多くの従来型企業では、既存のシステムやアプリケーションで昨今の顧客の期待に応え続けることが難しくなっています。この場合、経営者は、老朽化した IT システムの保守を続けるのか、新たな製品やサービスに投資をするのか、選択を迫られることになります。「Google Cloud によるインフラストラクチャとアプリケーションのモダナイゼーション」ではそうした課題を明らかにするとともに、そうした課題をクラウド テクノロジーによって乗り越えるためのソリューションについて学びます。 このコースは クラウド デジタル リーダー 学習プログラムの一部で、個人が自分の役割において成長し、ビジネスの未来を構築することを目的としています。
企業における AI と ML の利用が拡大し続けるなか、責任を持ってそれを構築することの重要性も増しています。多くの企業にとっての課題は、責任ある AI と口で言うのは簡単でも、それを実践するのは難しいということです。このコースは、責任ある AI を組織で運用化する方法を学びたい方に最適です。 このコースでは、Google Cloud が責任ある AI を現在どのように運用化しているかを、ベスト プラクティスや教訓と併せて学び、責任ある AI に対する独自のアプローチを構築するためのフレームワークとして活用できるようにします。
このコースでは拡散モデルについて説明します。拡散モデルは ML モデル ファミリーの一つで、最近、画像生成分野での有望性が示されました。拡散モデルは物理学、特に熱力学からインスピレーションを得ています。ここ数年、拡散モデルは研究と産業界の両方で広まりました。拡散モデルは、Google Cloud の最先端の画像生成モデルやツールの多くを支える技術です。このコースでは、拡散モデルの背景にある理論と、モデルを Vertex AI でトレーニングしてデプロイする方法について説明します。
このコースでは、Transformer アーキテクチャと Bidirectional Encoder Representations from Transformers(BERT)モデルの概要について説明します。セルフアテンション機構をはじめとする Transformer アーキテクチャの主要コンポーネントと、それが BERT モデルの構築にどのように使用されているのかについて学習します。さらに、テキスト分類、質問応答、自然言語推論など、BERT を適用可能なその他のタスクについても学習します。このコースの推定所要時間は約 45 分です。
この入門レベルのマイクロラーニング コースでは、責任ある AI の概要と重要性、および Google が責任ある AI を自社プロダクトにどのように実装しているのかについて説明します。また、Google の AI に関する 7 つの原則についても説明します。
あらゆる規模の組織が、事業運営の変革にクラウドの能力と柔軟性を活用しているなかで、クラウド リソースを効果的に管理、スケーリングすることが複雑なタスクになる可能性もあります。 ここでは、Google Cloud Operations を使用したスケーリングを通して、クラウドにおける最新の運用、信頼性、レジリエンスに関する基本的概念と、Google Cloud がこういった取り組みをどのように支援できるのかについて理解を深めます。 このコースは クラウド デジタル リーダー 学習プログラムの一部で、個人が自分の役割において成長し、ビジネスの未来を構築することを目的としています。
この入門レベルのマイクロラーニング コースでは、生成 AI の概要、利用方法、従来の機械学習の手法との違いについて説明します。独自の生成 AI アプリを作成する際に利用できる Google ツールも紹介します。
Building a Conversational Interface with Dialogflow CX Building conversational interfaces will enable you to engage your constituents in delightful new ways. This section will provide an overview of Dialogflow CX, which provides a range of new capabilities, languages, and functions. Scaling Equity and Access with Enterprise Translation Hub Accurate, timely and cost effective document translation has long been a challenge to providing equitable and accessible service to all constituents. In this section, explore Google's Enterprise Translation solutions which provide scalable document translation leveraging best in class Artificial Intelligence and Machine Learning, while retaining the critical human in the loop for final post editing review.