Los cursos de Google Cloud Computing Foundations están destinados a personas que tienen un poco o nada de noción previa o experiencia sobre computación en la nube. Brindan una descripción general de los conceptos centrales básicos de la nube, los macrodatos y el aprendizaje automático, y explican dónde y cómo resulta adecuado utilizar Google Cloud. Cuando finalicen la serie de cursos, los alumnos podrán hablar con claridad sobre estos conceptos y demostrar sus habilidades prácticas. Los cursos deben completarse en el siguiente orden: 1. Aspectos básicos de la computación en Google Cloud: Fundamentos de la computación en la nube 2. Aspectos básicos de la computación en Google Cloud: Infraestructura en Google Cloud 3. Aspectos básicos de la computación en Google Cloud: Redes y seguridad en Google Cloud 4. Aspectos básicos de la computación en Google Cloud: Datos, IA y AA en Google Cloud En el curso final de la serie, se estudian los servicios de macrodatos administrados, el aprendiza…
Business professionals in non-technical roles have a unique opportunity to lead or influence machine learning projects. If you have questions about machine learning and want to understand how to use it, without the technical jargon, this course is for you. Learn how to translate business problems into machine learning use cases and vet them for feasibility and impact. Find out how you can discover unexpected use cases, recognize the phases of an ML project and considerations within each, and gain confidence to propose a custom ML use case to your team or leadership or translate the requirements to a technical team.
En este curso de capacitación de autoaprendizaje, los participantes aprenderán cuáles son las mitigaciones de los ataques a varios puntos de una infraestructura basada en Google Cloud, incluidos los ataques de denegación de servicio distribuido, los ataques de suplantación de identidad (phishing) y las amenazas relacionadas con la clasificación y el uso de contenido. También aprenderán sobre Security Command Center, los registros de auditoría y los registros de Cloud, y sobre el uso de Forseti para ver el cumplimiento general de las políticas de seguridad de tu organización.
En este curso, se presentan las ofertas de aprendizaje automático (AA) en Google Cloud que compilan proyectos de IA predictiva y generativa. También se exploran las tecnologías, los productos y las herramientas disponibles durante el ciclo de vida desde los datos hasta la IA, que engloban los fundamentos, el desarrollo y las soluciones de IA. El objetivo es ayudar a científicos de datos, ingenieros de AA y desarrolladores de IA a mejorar sus habilidades y conocimientos a través de experiencias de aprendizaje atractivas y ejercicios prácticos.
En este curso, aprenderás sobre los productos y servicios de macrodatos y aprendizaje automático de Google Cloud involucrados en el ciclo de vida de datos a IA. También explorarás los procesos, los desafíos y los beneficios de crear una canalización de macrodatos y modelos de aprendizaje automático con Vertex AI en Google Cloud.
En este curso, definimos qué es el aprendizaje automático y cómo puede beneficiar a tu negocio. Verás algunas demostraciones de AA en acción y aprenderás términos clave de AA, como instancias, atributos y etiquetas. En los labs interactivos, practicarás la invocación de las APIs de AA previamente entrenadas que están disponibles y crearás tus propios modelos de aprendizaje automático con solo SQL y BigQuery ML.
Este curso breve sobre la integración de aplicaciones con modelos de Gemini 1.0 Pro en Google Cloud te ayudará a descubrir la API de Gemini y sus modelos de IA generativa. En este curso, aprenderás a acceder a los modelos de Gemini 1.0 Pro y Gemini 1.0 Pro Vision a partir del código. Podrás probar las capacidades de los modelos con instrucciones de texto, imágenes y video desde una app.
En este curso, descubrirás cómo Gemini, un colaborador potenciado por IA generativa de Google Cloud, ayuda a analizar los datos de los clientes y predecir las ventas de productos. También aprenderás a identificar, categorizar y desarrollar los clientes nuevos usando datos de clientes en BigQuery. A través de labs prácticos, comprobarás cómo Gemini mejora los flujos de trabajo de análisis de datos y aprendizaje automático. Recuerda que Duet AI ahora se llama Gemini, nuestro modelo de nueva generación.
En este curso, aprenderás cómo Gemini, un colaborador potenciado por IA generativa de Google Cloud, ayuda a los desarrolladores a compilar aplicaciones. Aprenderás a darle instrucciones a Gemini para que explique códigos, recomiende servicios de Google Cloud y genere código para tus aplicaciones. A través de un lab práctico, comprobarás cómo Gemini mejora el flujo de trabajo de desarrollo de aplicaciones. Recuerda que Duet AI ahora se llama Gemini, nuestro modelo de nueva generación.
Earn a skill badge by completing the Analyze Images with the Cloud Vision API quest, where you discover how to leverage the Cloud Vision API for various tasks, including extracting text from images.
Earn a skill badge by completing the Analyze Speech and Language with Google APIs quest, where you learn how to use the Natural Language and Speech APIs in real-world settings.
Earn a skill badge by completing the Detect Manufacturing Defects using Visual Inspection AI course, where you learn how to use Visual Inspection AI to deploy a solution artifact and test that it can successfully identify defects in a manufacturing process.
Complete the introductory Build LookML Objects in Looker skill badge course to demonstrate skills in the following: building new dimensions and measures, views, and derived tables; setting measure filters and types based on requirements; updating dimensions and measures; building and refining Explores; joining views to existing Explores; and deciding which LookML objects to create based on business requirements.
Complete the introductory Create and Manage AlloyDB Instances skill badge to demonstrate skills in the following: performing core AlloyDB operations and tasks, migrating to AlloyDB from PostgreSQL, administering an AlloyDB database, and accelerating analytical queries using the AlloyDB Columnar Engine.
Completa la insignia de habilidad intermedia Administra Kubernetes en Google Cloud para demostrar tus capacidades para administrar implementaciones con kubectl y supervisar y depurar aplicaciones en Google Kubernetes Engine (GKE), así como con las técnicas de entrega continua. Una insignia de habilidad es una insignia digital exclusiva que emite Google Cloud para reconocer que dominas sus productos y servicios, y que pone a prueba tu capacidad de aplicar esos conocimientos en un entorno interactivo y práctico. Completa esta insignia de habilidad y el lab de desafío de la evaluación final, y recibirás una insignia digital que puedes compartir con tus contactos.
Complete the introductory Monitor and Manage Google Cloud Resources skill badge to demonstrate skills in the following: granting and revoking IAM permissions; installing monitoring and logging agents; creating, deploying, and testing an event-driven Cloud Run function.
Obtén la insignia de habilidad intermedia Implementa aplicaciones de Kubernetes en Google Cloud y demuestra tus habilidades para configurar y crear imágenes de contenedores de Docker, crear y administrar clústeres de Google Kubernetes Engine (GKE), utilizar kubectl para la administración eficiente de clústeres y, además, implementar aplicaciones de Kubernetes con prácticas de entrega continua (CD) sólidas.
Para ganar una insignia de habilidad, completa el curso Configura un entorno de desarrollo de apps en Google Cloud. Allí aprenderás a crear y conectar una infraestructura de nube centrada en el almacenamiento usando las capacidades básicas de las siguientes tecnologías: Cloud Storage, Identity and Access Management, Cloud Functions y Pub/Sub.
Obtén una insignia de habilidad completando el curso Desarrolla tu red de Google Cloud, en el que conocerás múltiples formas de implementar y supervisar aplicaciones, incluidos cómo explorar roles de IAM y agregar o quitar el acceso a los proyectos, crear redes de VPC, implementar y supervisar VMs de Compute Engine, escribir consultas en SQL, implementar y supervisar VMs en Compute Engine y, además, implementar aplicaciones a través de Kubernetes con múltiples enfoques de implementación.
Completa la insignia de habilidad intermedia del curso Desarrollar apps sin servidores con Firebase y demuestra tus capacidades para hacer lo siguiente: diseñar arquitecturas y compilar aplicaciones web sin servidores con Firebase; usar Firestore para administrar bases de datos; automatizar procesos de implementación con Cloud Build, e integrar la funcionalidad Asistente de Google en tus aplicaciones.
Completa la insignia de habilidad intermedia del curso Implementa flujos de trabajo de DevOps en Google Cloud para demostrar tus capacidades para hacer lo siguiente: crear repositorios de Git con Cloud Source Repositories; lanzar, administrar y escalar implementaciones en Google Kubernetes Engine (GKE), y diseñar canalizaciones de CI/CD que automatizan la compilación y la implementación de imágenes de contenedor en GKE. Una insignia de habilidad es una insignia digital exclusiva que emite Google Cloud en reconocimiento de tu dominio de los productos y servicios de la plataforma, y que prueba tu capacidad de aplicar esos conocimientos en un entorno interactivo y práctico. Completa este curso de insignia de habilidad y el lab de desafío de la evaluación final para recibir una insignia que puedes compartir con tu red.
Completa la insignia de habilidad introductoria Implementa Cloud Load Balancing para Compute Engine y demuestra tus habilidades para realizar las siguientes actividades: crear y, luego, implementar máquinas virtuales en Compute Engine, y configurar balanceadores de cargas de red y de aplicaciones.
Obtén la insignia de habilidad intermedia Ingeniería de datos para crear modelos predictivos con BigQuery ML y demuestra tus capacidades para crear canalizaciones de transformación de datos en BigQuery con Dataprep de Trifacta; usar Cloud Storage, Dataflow y BigQuery para crear flujos de trabajo de extracción, transformación y carga (ETL), y crear modelos de aprendizaje automático con BigQuery ML.
En esta misión, aprenderá sobre los cuatro tipos de arquitecturas de sitios web disponibles en Google Cloud para garantizar que su sitio web esté disponible y sea escalable. Complete esta misión, incluido el laboratorio de desafíos al final, para recibir una insignia digital exclusiva de Google Cloud. El laboratorio de desafíos no proporciona pasos prescriptivos, sino que requiere la creación de soluciones con una orientación mínima y pondrá a prueba sus habilidades tecnológicas de Google Cloud. Esta misión se basa en la serie de videos Get Cooking in Cloud.
En esta misión, aprenderá sobre los cuatro tipos de arquitecturas de sitios web disponibles en Google Cloud para garantizar que su sitio web esté disponible y sea escalable. Complete esta misión, incluido el laboratorio de desafíos al final, para recibir una insignia digital exclusiva de Google Cloud. El laboratorio de desafío no proporciona pasos prescriptivos, sino que requiere la creación de soluciones con una orientación mínima y pondrá a prueba sus habilidades tecnológicas de Google Cloud. Esta misión se basa en la serie de videos Get Cooking in Cloud.
Completa la insignia de habilidad introductoria del curso Obtén estadísticas a partir de datos de BigQuery y demuestra tus habilidades para realizar las siguientes actividades: escribir consultas en SQL, consultar tablas públicas, cargar datos de muestra en BigQuery, solucionar problemas de errores de sintaxis habituales con el validador de consultas en BigQuery y crear informes en Looker Studio con la conexión a datos de BigQuery.
Completa la insignia de habilidad intermedia Crea una infraestructura con Terraform en Google Cloud y demuestra tus habilidades para realizar las siguientes actividades: aplicar los principios de la infraestructura como código (IaC) con Terraform; aprovisionar y administrar recursos de Google Cloud con parámetros de configuración de Terraform; realizar una administración de estado eficaz (local y remota) y modularizar el código de Terraform para la reutilización y la organización.
Earn a Pre-Sales skill badge by completing the Cloud Run Hackathon Workshop. This Workshop is based on Cloud Run, where you will learn how to: 1. Build container image from source code by Cloud Build. 2. Deploy the microservice to Cloud Run continuously. 3. Monitor the microservice with Cloud Ops. A Pre-Sales skill badge is an exclusive digital badge issued by Google Cloud in recognition of your participation in a hands-on Pre-sales Workshop and tests your ability to apply your knowledge in an interactive hands-on environment. Complete the skill badge quest, and final assessment challenge lab, to receive a digital badge that you can share with your network.
Want to learn the core SQL and visualization skills of a Data Analyst? Interested in how to write queries that scale to petabyte-size datasets? Take the BigQuery for Analyst Quest and learn how to query, ingest, optimize, visualize, and even build machine learning models in SQL inside of BigQuery.
Esta es la segunda de dos Quests de labs prácticos que provienen de los ejercicios del libro Data Science on Google Cloud Platform de Valliappa Lakshmanan, publicado por O'Reilly Media, Inc. En esta segunda Quest, que abarca desde el capítulo 9 hasta el final del libro, ampliará las habilidades practicadas en la primera Quest y ejecutará trabajos completos de aprendizaje automático con herramientas de última generación y conjuntos de datos del mundo real, todo mediante el uso de las herramientas y los servicios de Google Cloud Platform.
Machine Learning is one of the most innovative fields in technology, and the Google Cloud Platform has been instrumental in furthering its development. With a host of APIs, Google Cloud has a tool for just about any machine learning job. In this advanced-level course, you will get hands-on practice with machine learning at scale and how to employ the advanced ML infrastructure available on Google Cloud.
Get Anthos Ready. Demand for Google Kubernetes Engine is growing, and customers are looking to Google and its partners to provide in-depth technical knowledge. This first Google Kubernetes Engine-centric Quest of best practices hands-on labs will get you started containerizing to modernize in place , and then managing your deployed apps and services -- with monitoring, tracing, and logging.
Usar potencia de procesamiento a gran escala para reconocer patrones y “leer” imágenes es una de las tecnologías fundamentales de la IA, que, por ejemplo, se usa en los vehículos autónomos y el reconocimiento facial. Google Cloud proporciona velocidad y precisión de primer nivel a través de sistemas que se pueden utilizar con solo llamar a las APIs. Con estas y muchas otras APIs, Google Cloud cuenta con herramientas para casi cualquier trabajo de aprendizaje automático. En este curso introductorio, obtendrás experiencia práctica con el aprendizaje automático a medida que se aplica a procesamiento de imágenes en labs que te permitirán etiquetar imágenes, detectar rostros y puntos de referencia, y también extraer, analizar y traducir texto de las imágenes.
TensorFlow is an open source software library for high performance numerical computation that's great for writing models that can train and run on platforms ranging from your laptop to a fleet of servers in the Cloud to an edge device. This quest takes you beyond the basics of using predefined models and teaches you how to build, train and deploy your own on Google Cloud.
In this advanced-level quest, you will learn how to harness serious Google Cloud computing power to run big data and machine learning jobs. The hands-on labs will give you use cases, and you will be tasked with implementing big data and machine learning practices utilized by Google’s very own Solutions Architecture team. From running Big Query analytics on tens of thousands of basketball games, to training TensorFlow image classifiers, you will quickly see why Google Cloud is the go-to platform for running big data and machine learning jobs.
In this course you will learn how you to harness serious Google Cloud power and infrastructure. The hands-on labs will give you use cases and you will be tasked with implementing scaling practices utilized by Google’s very own Solutions Architecture team. From developing enterprise grade load balancing and autoscaling, to building continuous delivery pipelines, Google Cloud Solutions I: Scaling your Infrastructure will teach you best practices for taking your Google Cloud projects to the next level.
La metodología de migración de VM que ofrece Google Cloud les proporciona a los usuarios una ruta definida que se puede repetir. En esta Quest, obtendrá experiencia práctica en esta secuencia de migración de cuatro pasos. Compilará informes de evaluación con CloudPhysics, aprovechará las plantillas de infraestructura como código de Terraform, realizará migraciones lift-and-shift con Cloud Endure y, para finalizar, replicará aplicaciones como cargas de trabajo nativas de la nube. Inscríbase en esta Quest y practique con la solución más reciente de Google para la migración de VM. Como beneficio adicional, incluimos un lab básico sobre Google Kubernetes Engine para aquellos que necesiten un repaso.
This intermediate-level quest is unique among Qwiklabs quests. These labs have been curated to give operators hands-on practice with Anthos—a new, open application modernization platform on GCP. Anthos enables you to build and manage modern hybrid applications. Tasks include: installing service mesh, collecting telemetry, and securing your microservices with service mesh policies. This quest is composed of labs targeted to teach you everything you need to know to introduce service mesh, and Anthos, into your next hybrid cloud project.
Cloud Logging is a fully managed service that performs at scale. It can ingest application and system log data from thousands of VMs and, even better, analyze all that log data in real time. In this fundamental-level Quest, you learn how to store, search, analyze, monitor, and alert on log data and events from Google Cloud. The labs in the Quest give you hands-on practice using Cloud Logging to maximize your learning experience and provide insight on how you can use Cloud Logging to your own Google Cloud environment.
No es ningún secreto que el aprendizaje automático es uno de los campos de mayor crecimiento en el ámbito de la tecnología, y Google Cloud desempeñó un papel decisivo para impulsar su desarrollo. Con su gran cantidad de APIs, GCP cuenta con una herramienta para casi cualquier trabajo de aprendizaje automático. En este curso introductorio, obtendrás experiencia práctica con el aprendizaje automático a medida que se aplica al procesamiento del lenguaje en labs que te permitirán extraer entidades de un texto, realizar análisis sintácticos y de opiniones, y usar la API de Speech-to-Text para la transcripción.
Twelve years ago Lily started the Pet Theory chain of veterinary clinics, and has been expanding rapidly. Now, Pet Theory is experiencing some growing pains: their appointment scheduling system is not able to handle the increased load, customers aren't receiving lab results reliably through email and text, and veteranerians are spending more time with insurance companies than with their patients. Lily wants to build a cloud-based system that scales better than the legacy solution and doesn't require lots of ongoing maintenance. The team has decided to go with serverless technology. For the labs in the Google Cloud Run Serverless Quest, you will read through a fictitious business scenario in each lab and assist the characters in implementing a serverless solution. Looking for a hands on challenge lab to demonstrate your skills and validate your knowledge? On completing this quest, enroll in and finish the additional challenge lab at the end of this quest to receive an exclusive Google…
¿Desea convertir sus datos de marketing en estadísticas y compilar paneles? Reúna todos sus datos en un solo lugar para lograr un análisis a gran escala y poder compilar modelos. Aprenda a consultar sus datos y utilice BigQuery para obtener información repetible, escalable y valiosa. BigQuery es la base de datos estadísticos de Google de bajo costo, NoOps y completamente administrada. Con BigQuery, puede consultar muchos terabytes de datos sin tener que administrar infraestructuras y sin necesitar un administrador de base de datos. BigQuery usa SQL y puede aprovechar el modelo de prepago. BigQuery le permite enfocarse en el análisis de datos para buscar estadísticas valiosas.
Want to scale your data analysis efforts without managing database hardware? Learn the best practices for querying and getting insights from your data warehouse with this interactive series of BigQuery labs. BigQuery is Google's fully managed, NoOps, low cost analytics database. With BigQuery you can query terabytes and terabytes of data without having any infrastructure to manage or needing a database administrator. BigQuery uses SQL and can take advantage of the pay-as-you-go model. BigQuery allows you to focus on analyzing data to find meaningful insights.
¿Macrodatos, aprendizaje automático y datos científicos? Parece la combinación perfecta. En esta Quest de nivel avanzado, obtendrá experiencia práctica en servicios de GCP como Big Query, Dataproc y Tensorflow, aplicándolos a casos prácticos en los que se usan conjuntos de datos científicos de la vida real. Mediante la adquisición de experiencia en tareas como el análisis de datos de terremotos y la agregación de imágenes satelitales, Scientific Data Processing lo ayudará a expandir sus habilidades en macrodatos y aprendizaje automático para que pueda solucionar problemas propios relacionados con un amplio espectro de disciplinas científicas.
In this series of labs you will learn how to use BigQuery to analyze NCAA basketball data with SQL. Build a Machine Learning Model to predict the outcomes of NCAA March Madness basketball tournament games.
Este curso introductorio es único entre las demás ofertas de cursos. Los labs se seleccionaron para brindar a los profesionales de TI experiencia práctica con los temas y servicios que aparecen en la certificación Associate Cloud Engineer de Google Cloud. Este curso se compone de labs específicos que abarcan desde IAM y redes hasta la implementación de Kubernetes Engine, y que pondrán a prueba tus conocimientos sobre Google Cloud. Ten en cuenta que, si bien realizar estos labs te permitirá aumentar tus capacidades y habilidades, te recomendamos que además consultes la guía del examen y otros recursos de preparación disponibles.
Obtén una ventaja competitiva a través de DevOps. DevOps es un movimiento organizativo y cultural que tiene como objetivo aumentar la velocidad de entrega de software, mejorar la confiabilidad del servicio y crear una propiedad compartida entre las partes interesadas. En este curso, aprenderás a usar Google Cloud para mejorar la velocidad, estabilidad, disponibilidad y seguridad de tu capacidad de entrega de software. DevOps Research and Assessment se unió a Google Cloud. ¿Cómo se compara tu equipo? Completa este cuestionario de opción múltiple de cinco preguntas para saberlo.
¿Quieres compilar modelos de AA en minutos en lugar de horas utilizando únicamente SQL? BigQuery ML democratiza el aprendizaje automático, ya que permite que los analistas de datos creen, entrenen, evalúen y realicen predicciones con modelos de aprendizaje automático a través de herramientas y habilidades de SQL existentes. En esta serie de labs, experimentarás con diferentes tipos de modelos y aprenderás cuáles son las características de un buen modelo.
En este curso de nivel introductorio, se enseña a los desarrolladores de aplicaciones de qué manera el ecosistema de Google Cloud los puede ayudar a compilar aplicaciones nativas de la nube que sean seguras, inteligentes y escalables. Aprenderás a desarrollar y escalar aplicaciones sin necesidad de configurar una infraestructura, a ejecutar análisis de datos, a obtener estadísticas a partir de ellos y a desarrollar con APIs de AA previamente entrenadas para aprovechar el aprendizaje automático incluso si no eres experto en ese tipo de tecnología. También experimentarás la integración perfecta entre varios servicios de Google y APIs para crear apps inteligentes.
Serverless architectures allow you to build and run applications and services without needing to provision, manage, and scale infrastructure. This quest will show how to design, build, and deploy interactive serverless web applications, using a simple HTML/JavaScript web interface which uses Amazon API Gateway calls to send requests to AWS Lambda backends that query Amazon DynamoDB data.
This advanced-level quest is unique amongst the other catalog offerings. The labs have been curated to give IT professionals hands-on practice with topics and services that appear in the Google Cloud Certified Professional Data Engineer Certification. From Big Query, to Dataprep, to Cloud Composer, this quest is composed of specific labs that will put your Google Cloud data engineering knowledge to the test. Be aware that while practice with these labs will increase your skills and abilities, you will need other preparation, too. The exam is quite challenging and external studying, experience, and/or background in cloud data engineering is recommended. Looking for a hands on challenge lab to demonstrate your skills and validate your knowledge? On completing this quest, enroll in and finish the additional challenge lab at the end of the Engineer Data in the Google Cloud to receive an exclusive Google Cloud digital badge.
In this advanced-level quest, you will learn the ins and outs of developing GCP applications in Python. The first labs will walk you through the basics of environment setup and application data storage with Cloud Datastore. Once you have a handle on the fundamentals, you will get hands-on practice deploying Python applications on Kubernetes and App Engine (the latter is the same framework that powers Snapchat!) With specialized bonus labs that teach user authentication and backend service development, this quest will give you practical experience so you can start developing robust Python applications straight away.
En esta recopilación de labs prácticos, se demuestran los beneficios de integrar los servicios y las herramientas de Google Cloud con aplicaciones de Workspace, como usar Node.js para crear un bot de encuestas, usar la API de Natural Language para reconocer opiniones en un documento de Google y crear un chat bot con Apps Script.
The hands-on labs in this Quest are structured to give experienced app developers hands-on practice with the state-of-the-art developing applications in Google Cloud. The topics align with the Google Cloud Certified Professional Cloud Developer Certification. These labs follow the sequence of activities needed to create and deploy an app in Google Cloud from beginning to end. Be aware that while practice with these labs will increase your skills and abilities, it is recommended that you also review the exam guide and other available preparation resources.
In this advanced-level quest, you will learn the ins and outs of developing GCP applications in Java. The first labs will walk you through the basics of environment setup and application data storage with Cloud Datastore. Once you have a handle on the fundamentals, you will get hands-on practice deploying Java applications on Kubernetes and App Engine (the latter is the same framework that powers Snapchat!) With specialized bonus labs that teach user authentication and backend service development, this quest will give you practical experience so you can start developing robust Java applications straight away.
Containerized applications have changed the game and are here to stay. With Kubernetes, you can orchestrate containers with ease, and integration with the Google Cloud Platform is seamless. In this advanced-level quest, you will be exposed to a wide range of Kubernetes use cases and will get hands-on practice architecting solutions over the course of 8 labs. From building Slackbots with NodeJS, to deploying game servers on clusters, to running the Cloud Vision API, Kubernetes Solutions will show you first-hand how agile and powerful this container orchestration system is.
Las interfaces de programación de aplicaciones de Google Cloud son el mecanismo que permite interactuar con los servicios de Google Cloud de manera programática. En esta Quest, adquirirá experiencia práctica en varias API de GCP, que aprenderá a utilizar con el Explorador de API de Google, una herramienta que le permite explorar API y ejecutar sus métodos de forma interactiva. Cuando aprenda a transferir datos entre depósitos de Cloud Storage, implementar instancias de Compute Engine, configurar clústeres de Dataproc y mucho más, el Explorador de API le mostrará qué tan útiles son las API y por qué los usuarios con experiencia en GCP las usan de forma casi exclusiva. Inscríbase para participar en esta Quest hoy mismo.
If you’re looking to take your Google Cloud application to the next level, look no further than Deployment Manager. By automating the creation of GCP resources and services, Deployment Manager lets you focus on developing rather than maintaining. In this advanced-level quest, you will get hands on practice with Deployment Manager by building custom templates, automating Python and Jinja application instances, and scaling custom networks.
Esta Quest de nivel básico es única entre las demás ofertas de Qwiklabs. Los labs se seleccionaron para brindar a los profesionales de TI experiencia práctica en temas y servicios que aparecen en la certificación Associate Cloud Engineer de Google Cloud Certified. Desde IAM hasta herramientas de redes y la implementación de Kubernetes Engine, esta Quest se compone de labs específicos que pondrán a prueba sus conocimientos de GCP. Tenga en cuenta que, si bien realizar estos labs le permitirá aumentar sus habilidades y capacidades, le recomendamos que además consulte la guía del examen y otros recursos de preparación disponibles.
With Google Assistant part of over a billion consumer devices, this quest teaches you how to build practical Google Assistant applications integrated with Google Cloud services via APIs. Example apps will use the Dialogflow conversational suite and the Actions and Cloud Functions frameworks. You will build 5 different applications that explore useful and fun tools you can extend on your own. No hardware required! These labs use the cloud-based Google Assistant simulator environment for developing and testing, but if you do have your own device, such as a Google Home or a Google Hub, additional instructions are provided on how to deploy your apps to your own hardware.
When it comes to hosting websites and web applications, you want a framework that’s robust, fast, and secure. By choosing the Google Cloud Platform, you will have all of those needs covered. In this fundamental-level quest, you will get hands-on practice with GCPs key infrastructure and computing services for the web. From deploying your first web app, to integrating Cloud SQL with Ruby on Rails, to mapping the NYC subway system on App Engine, you will learn all the skills needed to harness GCPs web hosting power.
La seguridad es un cualidad indiscutible de los servicios de Google Cloud, por lo que Google Cloud desarrolló herramientas específicas para garantizar la identidad y seguridad en todos tus proyectos. En este curso introductorio, obtendrás experiencia práctica con el servicio de Identity and Access Management (IAM) de Google Cloud, que es el recurso principal para administrar cuentas de usuarios y máquinas virtuales. Obtendrás experiencia con la seguridad de la red a través del aprovisionamiento de VPC y VPN, y aprenderás qué herramientas están disponibles para la protección contra amenazas de seguridad y la pérdida de datos.
Los macrodatos, el aprendizaje automático y la Inteligencia Artificial son temas informáticos populares en la actualidad; sin embargo, estos campos son muy especializados y es difícil conseguir material básico. Por suerte, Google Cloud proporciona servicios fáciles de usar en estas áreas y, con este curso de nivel básico, puedes dar tus primeros pasos con herramientas como BigQuery, la API de Cloud Speech y Video Intelligence.
Las herramientas de redes son un tema clave de la computación en la nube. Es la tecnología subyacente de Google Cloud y conecta todos tus recursos y servicios entre sí. En este curso, se abordarán los servicios esenciales de herramientas de redes de Google Cloud y obtendrás experiencia práctica con herramientas especializadas para desarrollar redes consolidadas. Desde los pormenores de las VPC hasta la creación de balanceadores de cargas de nivel empresarial, Automatiza la implementación y administra el tráfico en una red de Google Cloud te dará la experiencia práctica necesaria para empezar a crear redes sólidas de inmediato.
Cloud SQL is a fully managed database service that stands out from its peers due to high performance, seamless integration, and impressive scalability. In this quest you will receive hands-on practice with the basics of Cloud SQL and quickly progress to advanced features, which you will apply to production frameworks and application environments. From creating instances and querying data with SQL, to building Deployment Manager scripts and connecting Cloud SQL instances with applications run on GKE containers, this quest will give you the knowledge and experience needed so you can start integrating this service right away.
Si eres un desarrollador principiante de soluciones en la nube que busca adquirir experiencia práctica más allá de lo aprendido en Conceptos básicos de Google Cloud, este curso es para ti. Obtendrás experiencia práctica a través de labs que profundizan en Cloud Storage y otros servicios de aplicaciones clave, como Monitoring y Cloud Functions. Desarrollarás habilidades valiosas que se pueden aplicar a cualquier iniciativa de Google Cloud.
The Google Cloud Platform provides many different frameworks and options to fit your application’s needs. In this introductory-level quest, you will get plenty of hands-on practice deploying sample applications on Google App Engine. You will also dive into other web application frameworks like Firebase, Wordpress, and Node.js and see firsthand how they can be integrated with Google Cloud.
In this introductory-level quest, you will learn the fundamentals of developing and deploying applications on the Google Cloud Platform. You will get hands-on experience with the Google App Engine framework by launching applications written in languages like Python, Ruby, and Java (just to name a few). You will see first-hand how straightforward and powerful GCP application frameworks are, and how easily they integrate with GCP database, data-loss prevention, and security services.
En esta Quest de nivel básico, adquirirá experiencia práctica en las herramientas y los servicios fundamentales de Google Cloud Platform. GCP Essentials es la primera Quest recomendada para el estudiante de Google Cloud. Ingresará con poco o ningún conocimiento previo sobre la nube, y saldrá con experiencia práctica que podrá aplicar a su primer proyecto de GCP. Desde la escritura de comandos de Cloud Shell y la implementación de su primera máquina virtual hasta la ejecución de aplicaciones en Kubernetes Engine o mediante el balanceo de cargas, GCP Essentials es una excelente introducción a las funciones básicas de la plataforma. En los videos de 1 minuto, se le explicarán los conceptos clave de cada lab.
No es ningún secreto que el aprendizaje automático es uno de los campos de mayor crecimiento en tecnología, y Google Cloud Platform desempeñó un papel decisivo como impulsor de su desarrollo. Con una gran cantidad de API, GCP cuenta con una herramienta para casi cualquier trabajo de aprendizaje automático. En esta Quest de nivel avanzado, adquirirá experiencia práctica en las API de aprendizaje automático cuando complete los labs Cómo implementar un chatbot de IA con Dialogflow y Cómo detectar etiquetas, rostros y puntos de referencia en imágenes con la API de Cloud Vision, entre otros.
Kubernetes es el sistema para la organización de contenedores más popular, y Google Kubernetes Engine se diseñó específicamente para admitir implementaciones de Kubernetes administradas en Google Cloud. En este curso de nivel avanzado, adquirirás experiencia práctica en la configuración de imágenes y contenedores de Docker, así como en la implementación de aplicaciones completas de Kubernetes Engine. También aprenderás las habilidades prácticas necesarias para integrar la organización de contenedores en tu propio flujo de trabajo. ¿Buscas un lab de desafío práctico para demostrar tus habilidades y validar tus conocimientos? Cuando termines este curso, completa el lab de desafío adicional que encontrarás al final del curso Implementa aplicaciones de Kubernetes en Google Cloud para recibir una insignia digital exclusiva de Google Cloud.