Suivez le cours Développer votre réseau Google Cloud et obtenez un badge de compétence. Dans ce cours, vous avez appris plusieurs façons de déployer et de surveiller des applications. Pour cela, vous avez vu comment parcourir les rôles IAM et ajouter/supprimer l'accès au projet, créer des réseaux VPC, déployer et surveiller des VM Compute Engine, rédiger des requêtes SQL, déployer et surveiller des VM dans Compute Engine, mais aussi comment déployer des applications à l'aide de Kubernetes avec plusieurs approches de déploiement.
Obtenez un badge de compétence en suivant le cours Créer un réseau Google Cloud sécurisé, dans lequel vous découvrirez plusieurs ressources liées à la mise en réseau permettant de créer, de faire évoluer et de sécuriser vos applications sur Google Cloud.
Terminez le cours intermédiaire Déployer des applications Kubernetes sur Google Cloud pour recevoir un badge démontrant vos compétences dans les domaines suivants : la configuration et la création d'images de conteneur Docker, la création et la gestion de clusters Google Kubernetes Engine (GKE), l'utilisation de kubectl pour gérer efficacement les clusters et le déploiement d'applications Kubernetes en appliquant des pratiques de livraison continue (CD) robustes.
Terminez le cours d'introduction Migrer des données MySQL vers Cloud SQL à l’aide de Database Migration Service pour recevoir un badge démontrant vos compétences dans les domaines suivants : migration de données MySQL vers Cloud SQL à l'aide de différents types de jobs et différentes options de connectivité disponibles dans Database Migration Service et migration de données utilisateur MySQL lors de l'exécution de jobs Database Migration Service.
Terminez le cours intermédiaire Ingénierie des données pour la modélisation prédictive avec BigQuery ML pour recevoir un badge démontrant vos compétences dans les domaines suivants : la création de pipelines de transformation des données dans BigQuery avec Dataprep by Trifacta ; l'utilisation de Cloud Storage, Dataflow et BigQuery pour créer des workflows ETL (Extract, Transform and Load) ; et la création de modèles de machine learning avec BigQuery ML.
This advanced-level quest is unique amongst the other catalog offerings. The labs have been curated to give IT professionals hands-on practice with topics and services that appear in the Google Cloud Certified Professional Data Engineer Certification. From Big Query, to Dataprep, to Cloud Composer, this quest is composed of specific labs that will put your Google Cloud data engineering knowledge to the test. Be aware that while practice with these labs will increase your skills and abilities, you will need other preparation, too. The exam is quite challenging and external studying, experience, and/or background in cloud data engineering is recommended. Looking for a hands on challenge lab to demonstrate your skills and validate your knowledge? On completing this quest, enroll in and finish the additional challenge lab at the end of the Engineer Data in the Google Cloud to receive an exclusive Google Cloud digital badge.
Suivez le cours Configurer un environnement de développement d'applications sur Google Cloud et obtenez un badge de compétence. Dans ce cours, vous apprendrez à créer et connecter une infrastructure cloud axée sur le stockage à l'aide des fonctionnalités de base des technologies suivantes Cloud Storage, Identity and Access Management, Cloud Functions et Pub/Sub.
Terminez le cours d'introduction Préparer des données pour les API de ML sur Google Cloud pour recevoir un badge démontrant vos compétences dans les domaines suivants : le nettoyage des données avec Dataprep by Trifacta, l'exécution de pipelines de données dans Dataflow, la création de clusters et l'exécution de jobs Apache Spark dans Dataproc, et l'appel d'API de ML comme l'API Cloud Natural Language, l'API Google Cloud Speech-to-Text et l'API Video Intelligence.
Terminez le cours d'introduction Implémenter Cloud Load Balancing pour Compute Engine pour recevoir un badge démontrant vos compétences dans les domaines suivants : Créer et déployer des machines virtuelles dans Compute Engine Configurer des équilibreurs de charge réseau et d'application.
Le cours Google Cloud Computing Foundations est destiné aux personnes qui ont peu de connaissances ou d’expérience en cloud computing, voire pas du tout. Il présente de façon détaillée différents concepts (principes de base du cloud, big data et machine learning) et explique dans quels cas utiliser Google Cloud et pourquoi. Au terme de ce cours, les participants sauront expliquer les concepts associés au cloud computing, au big data et au machine learning, et ils auront acquis certaines compétences pratiques. Ce cours fait partie d'une série de cours intitulée Google Cloud Computing Foundations. Les cours doivent être suivis dans l'ordre suivant : Google Cloud Computing Foundations: Cloud Computing Fundamentals - Locales Google Cloud Computing Foundations: Infrastructure in Google Cloud - Locales Google Cloud Computing Foundations: Networking and Security in Google Cloud - Locales Google Cloud Computing Foundations: Data, ML, and AI in Google Cloud…