参加 ログイン

Bashtovyi Andrii

メンバー加入日: 2023

シルバーリーグ

137243 ポイント
Workspace: データの統合 Earned 9月 13, 2025 EDT
Google Cloud の費用の把握 Earned 9月 13, 2025 EDT
Baseline: Deploy & Develop Earned 9月 13, 2025 EDT
Workspace: アドオン Earned 9月 13, 2025 EDT
Google Workspace コアサービス Earned 9月 13, 2025 EDT
Vertex AI と Flutter による 生成 AI エージェントの構築 Earned 9月 13, 2025 EDT
Gemini Code Assist でアプリ開発を効率化する Earned 9月 13, 2025 EDT
Gemini in BigQuery で生産性を高める Earned 8月 25, 2025 EDT
安全なソフトウェア デリバリー Earned 11月 16, 2024 EST
Google Security Operations - Fundamentals Earned 11月 15, 2024 EST
Google Cloud で実現する信頼とセキュリティ Earned 11月 15, 2024 EST
責任ある AI: Google Cloud における AI に関する原則の適用 Earned 11月 15, 2024 EST
Managing and Securing the Apigee Hybrid API Platform Earned 11月 14, 2024 EST
Google Cloud によるインフラストラクチャとアプリケーションのモダナイゼーション Earned 11月 13, 2024 EST
Google Cloud Operations を使用したスケーリング Earned 11月 13, 2024 EST
Hybrid Cloud Infrastructure Foundations with Anthos Earned 11月 13, 2024 EST
DEPRECATED Site Reliability Engineering: Measuring and Managing Reliability Earned 11月 12, 2024 EST
Google Cloud における AI と ML の概要 Earned 11月 12, 2024 EST
Google の SRE 文化の醸成 Earned 11月 11, 2024 EST
Advanced ML: ML Infrastructure Earned 11月 11, 2024 EST
責任ある AI の概要 Earned 10月 10, 2024 EDT
画像キャプション モデルの作成 Earned 10月 10, 2024 EDT
大規模言語モデルの概要 Earned 10月 10, 2024 EDT
Transformer モデルと BERT モデル Earned 10月 10, 2024 EDT
Planning for a Google Workspace Deployment - 日本語版 Earned 10月 10, 2024 EDT
Managing Change when Moving to Google Cloud Earned 10月 10, 2024 EDT
Google Cloud の AI を活用したイノベーション Earned 10月 8, 2024 EDT
生成 AI の概要 Earned 10月 8, 2024 EDT
Encoder-Decoder アーキテクチャ Earned 10月 8, 2024 EDT
アテンション機構 Earned 10月 8, 2024 EDT
Google Cloud 上の Gemini 1.0 Pro とアプリケーションの統合 Earned 10月 8, 2024 EDT
データ サイエンティストとアナリスト向けの Gemini Earned 10月 8, 2024 EDT
エンドツーエンドの SDLC のための Gemini Earned 10月 8, 2024 EDT
Gemini in Gmail Earned 10月 8, 2024 EDT
ネットワーク エンジニア向けの Gemini Earned 10月 8, 2024 EDT
DevOps エンジニア向けの Gemini Earned 10月 8, 2024 EDT
アプリケーション開発者向けの Gemini Earned 10月 8, 2024 EDT
クラウド アーキテクト向けの Gemini Earned 10月 8, 2024 EDT
Gemini in Google Meet Earned 10月 8, 2024 EDT
セキュリティ エンジニア向けの Gemini Earned 10月 8, 2024 EDT
Gemini for Google Workspace の概要 Earned 10月 8, 2024 EDT
Gemini in Google スプレッドシート Earned 10月 8, 2024 EDT
Gemini in Google ドキュメント Earned 10月 8, 2024 EDT
Gemini in Google スライド Earned 10月 8, 2024 EDT
Google Cloud における生成 AI を使用したウェブサイトのモダナイゼーション Earned 10月 8, 2024 EDT
画像生成の概要 Earned 10月 7, 2024 EDT
Introduction to Vertex Forecasting and Time Series in Practice Earned 10月 7, 2024 EDT
ベクトル検索とエンベディング Earned 10月 6, 2024 EDT
生成 AI のための ML オペレーション(MLOps) Earned 10月 6, 2024 EDT
Vertex AI を使用した ML オペレーション(MLOps): 特徴の管理 Earned 10月 6, 2024 EDT
Vertex AI でノートブックを使用する Earned 10月 5, 2024 EDT
Vertex AI Studio の概要 Earned 10月 5, 2024 EDT
Generative AI Explorer - Vertex AI Earned 10月 5, 2024 EDT
Vertex AI の Gemini API で生成 AI を使ってみる Earned 10月 5, 2024 EDT
Gemini と Streamlit を使用した生成 AI アプリの開発 Earned 10月 4, 2024 EDT
Build Custom Processors with Document AI Earned 10月 4, 2024 EDT
DEPRECATED Build LangChain Applications using Vertex AI Earned 10月 4, 2024 EDT
Natural Language API で感情分析を行う Earned 10月 4, 2024 EDT
Apps Script を使用して BigQuery データと Google Workspace を統合する Earned 10月 4, 2024 EDT
DEPRECATED BigQuery Basics for Data Analysts Earned 10月 4, 2024 EDT
Dataplex を使用したデータメッシュの構築 Earned 10月 3, 2024 EDT
Gemini と Imagen を使用した実際の AI アプリケーションの構築 Earned 10月 3, 2024 EDT
Vertex AI におけるプロンプト設計 Earned 10月 3, 2024 EDT
Google Cloud Speech API を使用する Earned 10月 2, 2024 EDT
API を使用して Cloud Storage を操作する Earned 10月 2, 2024 EDT
Google Cloud コンピューティングの基礎 Earned 10月 2, 2024 EDT
Sensitive Data Protection を使ってみる Earned 10月 2, 2024 EDT
Cloud Vision API を使用して画像を解析する Earned 10月 2, 2024 EDT
BigLake データの保護 Earned 10月 2, 2024 EDT
メタデータの拡充と BigLake データの検出 Earned 10月 2, 2024 EDT
Cloud Storage での安全なデータレイクの作成 Earned 10月 2, 2024 EDT
Google API を使用して音声と言語を分析する Earned 10月 2, 2024 EDT
Eventarc を使ってみる Earned 10月 2, 2024 EDT
ストリーミング分析を BigQuery に読み込む Earned 10月 2, 2024 EDT
API Gateway を使ってみる Earned 10月 2, 2024 EDT
AppSheet を使用したアプリ作成 Earned 10月 1, 2024 EDT
DEPRECATED Detect Manufacturing Defects Using Visual Inspection AI Earned 10月 1, 2024 EDT
Google スプレッドシートで関数、数式、グラフを使う Earned 10月 1, 2024 EDT
コネクテッド シートで BigQuery データを分析する Earned 9月 30, 2024 EDT
BigQuery で予測データ分析を行う Earned 9月 30, 2024 EDT
BigQuery でデータ ウェアハウスを構築する Earned 9月 30, 2024 EDT
Security Command Center による脅威と脆弱性の緩和 Earned 9月 30, 2024 EDT
Google データクラウドを使用してデータを共有する Earned 9月 30, 2024 EDT
Cloud Storage でのストリーミング データレイクの作成 Earned 9月 28, 2024 EDT
Cloud Storage を使ってみる Earned 9月 28, 2024 EDT
Google Cloud のサービス アカウントと IAM ロールを構成する Earned 9月 27, 2024 EDT
Google Cloud におけるモニタリング Earned 9月 27, 2024 EDT
Google Cloud リソースのモニタリングと管理 Earned 9月 27, 2024 EDT
Looker でのデータモデルの管理 Earned 9月 26, 2024 EDT
Looker での LookML オブジェクトの構築 Earned 9月 26, 2024 EDT
Looker を使ってみる Earned 9月 26, 2024 EDT
Looker ダッシュボードとレポート用にデータを準備する Earned 9月 26, 2024 EDT
Pub/Sub を使ってみる Earned 9月 26, 2024 EDT
DEPRECATED Networking Fundamentals on Google Cloud Earned 9月 25, 2024 EDT
Google Workspace ツールを使ってみる Earned 9月 25, 2024 EDT
Google Workspace の基礎 Earned 9月 25, 2024 EDT
Cloud Speech API: 3 つの方法 Earned 9月 24, 2024 EDT
Apps Script と AppSheet を使用した開発 Earned 9月 24, 2024 EDT
Gemini によるマルチモダリティとマルチモーダル RAG を使用したリッチ ドキュメントの検査 Earned 9月 22, 2024 EDT
Google Cloud での Kubernetes の管理 Earned 9月 20, 2024 EDT
Dataplex を使ってみる Earned 9月 19, 2024 EDT
BigQuery のデータから分析情報を引き出す Earned 9月 20, 2023 EDT
Terraform を使用したクラウド インフラストラクチャの管理 Earned 7月 14, 2023 EDT
Google Cloud の費用を最適化する Earned 7月 13, 2023 EDT
Automate Interactions with Contact Center AI Earned 7月 13, 2023 EDT
Using the Cloud SDK Command Line Earned 7月 11, 2023 EDT
Vertex AI での ML ソリューションの構築とデプロイ Earned 7月 11, 2023 EDT
Bigtable インスタンスの作成と管理 Earned 7月 8, 2023 EDT
App Engine: 3 つの方法 Earned 7月 8, 2023 EDT
Exploring APIs Earned 7月 8, 2023 EDT
Cloud SQL Earned 7月 7, 2023 EDT
Google デベロッパー向け基礎 Earned 7月 7, 2023 EDT
Website on Google Cloud Earned 7月 7, 2023 EDT
DevOps の基礎 Earned 7月 7, 2023 EDT
Google Cloud ネットワークにおけるデプロイの自動化とトラフィックの管理 Earned 7月 7, 2023 EDT
セキュリティと ID の基礎 Earned 7月 7, 2023 EDT
Intermediate ML: TensorFlow on Google Cloud Earned 7月 7, 2023 EDT
ML 入門: 画像処理 Earned 7月 7, 2023 EDT
ML 入門: 言語処理 Earned 7月 7, 2023 EDT
Creating Infrastructure on Google Cloud with Terraform Earned 7月 7, 2023 EDT
Google Workspace for IT Administrators Earned 7月 7, 2023 EDT
Build Apps & Websites with Firebase Earned 7月 7, 2023 EDT
Migrating MySQL data to Cloud SQL using Database Migration Service Earned 7月 7, 2023 EDT
DEPRECATED Google Cloud's Operations Suite Earned 7月 7, 2023 EDT
機械学習API Earned 7月 7, 2023 EDT
Google Cloud の Kubernetes Earned 7月 7, 2023 EDT
DEPRECATED Cloud Architecture Earned 7月 7, 2023 EDT
ベースライン: インフラストラクチャ Earned 7月 7, 2023 EDT
Google Cloud の基礎 Earned 7月 7, 2023 EDT
クラウド エンジニアリング Earned 7月 7, 2023 EDT
ベースライン: データ、ML、AI Earned 7月 7, 2023 EDT
DEPRECATED Applying BigQuery ML's Classification, Regression, and Demand Forecasting for Retail Applications Earned 7月 7, 2023 EDT
[DEPRECATED] Data Engineering Earned 7月 6, 2023 EDT
ML のための BigQuery Earned 7月 6, 2023 EDT
BigQuery ML を使用した ML モデルの作成 Earned 7月 6, 2023 EDT
BigQuery ML を使用した予測モデリング向けのデータ エンジニアリング Earned 7月 6, 2023 EDT
Cloud Run Functions: 3 つの方法 Earned 7月 6, 2023 EDT
Google Cloud におけるデータの保存、処理、管理 - コマンドライン Earned 7月 5, 2023 EDT
Google Cloud におけるデータの保存、処理、管理 - コンソール Earned 7月 5, 2023 EDT
Google Cloud の ML API 用にデータを準備 Earned 7月 5, 2023 EDT
DEPRECATED Google Cloud Solutions II: Data and Machine Learning Earned 7月 4, 2023 EDT
Google Cloud での TensorFlow を使用した画像の分類 Earned 7月 4, 2023 EDT
Document AI を使用して大規模なデータ キャプチャを自動化 Earned 7月 3, 2023 EDT
Google Cloud での ML の API の使用 Earned 7月 3, 2023 EDT
DEPRECATED Language, Speech, Text, & Translation with Google Cloud APIs Earned 7月 3, 2023 EDT
Google Kubernetes Engine のベスト プラクティス: セキュリティ Earned 7月 2, 2023 EDT
DEPRECATED Applied Data: Blockchain Earned 7月 2, 2023 EDT
Cloud Logging Earned 7月 2, 2023 EDT
Cloud Spanner インスタンスの作成と管理 Earned 7月 1, 2023 EDT
AlloyDB インスタンスの作成と管理 Earned 7月 1, 2023 EDT
Using Vault on Google Cloud Earned 6月 29, 2023 EDT
Chrome Enterprise Premium のセキュリティ機能を使用してクラウド トラフィックを保護する Earned 6月 28, 2023 EDT
Google Cloud Solutions I: Scaling Your Infrastructure Earned 6月 26, 2023 EDT
Google Workspace for IT Administrators Earned 6月 26, 2023 EDT
Google Cloud でのクラウド セキュリティの基礎の実践 Earned 6月 25, 2023 EDT
Database Migration Service を使用した MySQL データの Cloud SQL への移行 Earned 6月 24, 2023 EDT
Cloud SQL for PostgreSQL インスタンスの作成と管理 Earned 6月 23, 2023 EDT
Firebase を使用したサーバーレス アプリの開発 Earned 6月 22, 2023 EDT
安全な Google Cloud ネットワークの構築 Earned 6月 22, 2023 EDT
Apigee X を使用した API の開発と保護 Earned 6月 21, 2023 EDT
Google Cloud Managed Service for Prometheus で環境をモニタリングする Earned 6月 20, 2023 EDT
Google Cloud でのウェブサイトの構築 Earned 6月 19, 2023 EDT
Cloud Run でのサーバーレス アプリケーションの開発 Earned 6月 19, 2023 EDT
Google Cloud Run Serverless Workshop Earned 6月 19, 2023 EDT
Google Kubernetes Engine の費用の最適化 Earned 6月 17, 2023 EDT
クラウド アーキテクチャ: 設計、実装、管理 Earned 6月 15, 2023 EDT
Apigee X のデプロイと管理 Earned 6月 11, 2023 EDT
AWS プロフェッショナルのための Google Cloud インフラストラクチャの構築 Earned 6月 8, 2023 EDT
Azure プロフェッショナルのための Google Cloud インフラストラクチャの構築 Earned 6月 8, 2023 EDT
Google Cloud への CI / CD パイプラインの実装 Earned 6月 7, 2023 EDT
Google Cloud Observability を使用したモニタリングとロギング Earned 6月 6, 2023 EDT
Google Cloud での DevOps ワークフローの実装 Earned 6月 3, 2023 EDT
Google Cloud における Terraform を使用したインフラストラクチャの構築 Earned 6月 3, 2023 EDT
Google Cloud での Kubernetes アプリケーションのデプロイ Earned 6月 1, 2023 EDT
Google Cloud ネットワークの設定 Earned 5月 31, 2023 EDT
Google Cloud ネットワークの構築 Earned 5月 28, 2023 EDT
Google Cloud におけるアプリ開発環境の設定 Earned 5月 27, 2023 EDT
Compute Engine での Cloud Load Balancing の実装 Earned 5月 27, 2023 EDT

このハンズオンラボのコレクションでは、 Google Cloud サービスおよびツールと Workspace アプリケーションを統合する効果を実証します。BigQuery API、Apps Script、スプレッドシート、スライドを使用して Google Cloud データソースへの直接接続を作成し、 データを収集、分析、提示します。

詳細

このコースは、技術または財務の担当者で Google Cloud の費用の管理を担う方に最適です。請求先アカウントを設定する方法、 リソースを整理する方法、請求アクセス権限を管理する方法を学びます。 ハンズオンラボでは、請求書を表示する方法、 請求レポートを使用して Google Cloud の費用を追跡する方法、BigQuery や Google スプレッドシートを使用して課金データを分析する方法、 Looker Studio を使用してカスタムの課金ダッシュボードを作成する方法を習得します。動画で紹介されている関連資料には、 こちらの参考資料ドキュメントからアクセスできます。

詳細

In this introductory-level quest, you will learn the fundamentals of developing and deploying applications on the Google Cloud Platform. You will get hands-on experience with the Google App Engine framework by launching applications written in languages like Python, Ruby, and Java (just to name a few). You will see first-hand how straightforward and powerful GCP application frameworks are, and how easily they integrate with GCP database, data-loss prevention, and security services.

詳細

このハンズオンラボのコレクションでは、 Google Cloud サービスおよびツールと Workspace アプリケーションを統合する効果を実証します。Node.js を使用してアンケート ボットを構築したり、 Natural Language API を使用して Google ドキュメント内の感情を認識したり、 Apps スクリプトを使用して chat bot を構築したりします。

詳細

このコースは、Google Workspace コアサービスを包括的に理解することを目的としたものです。このコースでは、Gmail、カレンダー、ドライブ、Meet、Chat、ドキュメントなどのサービスに関する設定の有効化、無効化、構成について学びます。次に、ユーザーを支援するために Gemini をデプロイして管理する方法を学びます。最後に、タスクの自動化や Google Workspace アプリケーションの機能拡張を目的とした AppSheet や Apps Script のユースケースを確認します。

詳細

このコースでは、Google のポータブル UI ツールキットである Flutter を使用してアプリを開発し、そのアプリを Google の生成 AI モデル ファミリーである Gemini と統合する方法について学びます。また、AI エージェントとアプリケーションを構築、管理するための Google のプラットフォームである Vertex AI Agent Builder も使用します。

詳細

あらゆるレベルの開発者を対象としたこのコースでは、Google Cloud の AI を活用したアプリ開発支援ソリューション、Gemini Code Assist のコア機能について学習します。インテリジェントなコードの提案や予測入力から、リアルタイムのエラー検出やリファクタリング支援まで、Gemini Code Assist を活用して生産性とコードの質を大幅に向上させてより生産的で楽しめる作業に集中するために、貴重な時間を節約する方法をご紹介します。

詳細

このコースでは、データを AI 活用へつなげるためのワークフローに役立つ AI 搭載の機能スイート、Gemini in BigQuery について説明します。この機能スイートには、データの探索と準備、コード生成とトラブルシューティング、ワークフローの検出と可視化などが含まれます。このコースでは、概念の説明、実際のユースケース、ハンズオンラボを通じて、データ実務者が生産性を高め、開発パイプラインを迅速化できるよう支援します。

詳細

「安全なソフトウェア デリバリー」の中級スキルバッジを獲得すると、DevSecOps の原則に沿って、ソフトウェア開発ライフサイクル(SDLC) にセキュリティをプロアクティブに統合するスキルを証明できます。 Google Kubernetes Engine(GKE)と Cloud Run を活用して安全なコンテナ イメージのデプロイを行う方法、自動化された脆弱性スキャンを実装してリスクを事前に特定する方法、 Artifact Registry を使用してアプリケーション開発を効率化しながらセキュリティに重点を置く方法を学びます。さらに、堅牢な開発プロセスを実現する Cloud Build の統合スキルや、環境をきめ細かく制御するアドミッション コントロール ポリシーの実装スキルも習得できます。」

詳細

This course covers the baseline skills needed for the Google Security Operations Platform. The modules will cover specific actions and features that security engineers should become familiar with to start using the toolset.

詳細

組織がデータやアプリケーションをクラウドへ移行する際には、新たなセキュリティ上の課題に対処することが求められます。この「Google Cloud で実現する信頼とセキュリティ」コースでは、クラウド セキュリティの基礎、およびインフラストラクチャ セキュリティに対する Google Cloud のマルチレイヤ型アプローチが持つ価値について学ぶとともに、Google がクラウドへのお客様の信頼をどのように獲得し維持しているのかについて学びます。 このコースは クラウド デジタル リーダー 学習プログラムの一部で、個人が自分の役割において成長し、ビジネスの未来を構築することを目的としています。

詳細

企業における AI と ML の利用が拡大し続けるなか、責任を持ってそれを構築することの重要性も増しています。多くの企業にとっての課題は、責任ある AI と口で言うのは簡単でも、それを実践するのは難しいということです。このコースは、責任ある AI を組織で運用化する方法を学びたい方に最適です。 このコースでは、Google Cloud が責任ある AI を現在どのように運用化しているかを、ベスト プラクティスや教訓と併せて学び、責任ある AI に対する独自のアプローチを構築するためのフレームワークとして活用できるようにします。

詳細

This course discusses how environments are managed in Apigee hybrid, and how runtime plane components are secured. You will also learn how to deploy and debug API proxies in Apigee hybrid, and about capacity planning and scaling.

詳細

多くの従来型企業では、既存のシステムやアプリケーションで昨今の顧客の期待に応え続けることが難しくなっています。この場合、経営者は、老朽化した IT システムの保守を続けるのか、新たな製品やサービスに投資をするのか、選択を迫られることになります。「Google Cloud によるインフラストラクチャとアプリケーションのモダナイゼーション」ではそうした課題を明らかにするとともに、そうした課題をクラウド テクノロジーによって乗り越えるためのソリューションについて学びます。 このコースは クラウド デジタル リーダー 学習プログラムの一部で、個人が自分の役割において成長し、ビジネスの未来を構築することを目的としています。

詳細

あらゆる規模の組織が、事業運営の変革にクラウドの能力と柔軟性を活用しているなかで、クラウド リソースを効果的に管理、スケーリングすることが複雑なタスクになる可能性もあります。 ここでは、Google Cloud Operations を使用したスケーリングを通して、クラウドにおける最新の運用、信頼性、レジリエンスに関する基本的概念と、Google Cloud がこういった取り組みをどのように支援できるのかについて理解を深めます。 このコースは クラウド デジタル リーダー 学習プログラムの一部で、個人が自分の役割において成長し、ビジネスの未来を構築することを目的としています。

詳細

Welcome to Hybrid Cloud Infrastructure Foundations with Anthos! This is the first course of the Architecting Hybrid Cloud Infrastructure with Anthos path. Anthos enables you to build and manage modern applications, and gives you the freedom to choose where to run them. Anthos gives you one consistent experience in both your on-premises and cloud environments. During this course, you will be presented with modules that will take you through skills that you will use as an architect or administrator running Anthos environments. The modules in this course include videos, hands-on labs, and links to helpful documentation.

詳細

Service level indicators (SLIs) and service level objectives (SLOs) are fundamental tools for measuring and managing reliability. In this course, students learn approaches for devising appropriate SLIs and SLOs and managing reliability through the use of an error budget.

詳細

このコースでは、予測 AI と生成 AI の両方のプロジェクトを構築できる、Google Cloud の AI および機械学習(ML)サービスについて紹介します。AI の基盤、開発、ソリューションを含むデータから AI へのライフサイクル全体で利用可能なテクノロジー、プロダクト、ツールについて説明するとともに、魅力的な学習体験と実践的なハンズオン演習を通じて、データ サイエンティスト、AI 開発者、ML エンジニアの方々がスキルや知識を強化できるようサポートすることを目指しています。

詳細

多くの IT 組織では、アジリティを求める開発者と、安定性を重視する運用担当者の間で、インセンティブが調整されていません。サイト信頼性エンジニアリング(SRE)は、Google が開発と運用の間のインセンティブを調整し、ミッション クリティカルな本番環境サポートを行う方法です。SRE の文化的および技術的手法を導入することで、ビジネスと IT の連携を改善できます。このコースでは、Google の SRE の主な手法を紹介し、SRE の組織的な導入を成功させるうえで IT リーダーとビジネス リーダーが果たす重要な役割について説明します。

詳細

Machine Learning is one of the most innovative fields in technology, and the Google Cloud Platform has been instrumental in furthering its development. With a host of APIs, Google Cloud has a tool for just about any machine learning job. In this advanced-level course, you will get hands-on practice with machine learning at scale and how to employ the advanced ML infrastructure available on Google Cloud.

詳細

この入門レベルのマイクロラーニング コースでは、責任ある AI の概要と重要性、および Google が責任ある AI を自社プロダクトにどのように実装しているのかについて説明します。また、Google の AI に関する 7 つの原則についても説明します。

詳細

このコースでは、ディープ ラーニングを使用して画像キャプション生成モデルを作成する方法について学習します。エンコーダやデコーダなどの画像キャプション生成モデルのさまざまなコンポーネントと、モデルをトレーニングして評価する方法を学びます。このコースを修了すると、独自の画像キャプション生成モデルを作成し、それを使用して画像のキャプションを生成できるようになります。

詳細

このコースは、大規模言語モデル(LLM)とは何か、どのようなユースケースで活用できるのか、プロンプトのチューニングで LLM のパフォーマンスを高めるにはどうすればよいかについて学習する、入門レベルのマイクロ ラーニング コースです。独自の生成 AI アプリを開発する際に利用できる Google ツールも紹介します。

詳細

このコースでは、Transformer アーキテクチャと Bidirectional Encoder Representations from Transformers(BERT)モデルの概要について説明します。セルフアテンション機構をはじめとする Transformer アーキテクチャの主要コンポーネントと、それが BERT モデルの構築にどのように使用されているのかについて学習します。さらに、テキスト分類、質問応答、自然言語推論など、BERT を適用可能なその他のタスクについても学習します。このコースの推定所要時間は約 45 分です。

詳細

「Planning for a Google Workspace Deployment」は、「Google Workspace Administration」シリーズの最後のコースです。 このコースでは、Google の導入方法とベスト プラクティスについて説明します。Cymbal で Google Workspace の導入を計画している Katelyn と Marcus の例を見ていきます。プロビジョニング、メールフロー、データ移行、併用といった核となる技術プロジェクト分野に焦点を当て、各分野に最適な導入戦略を検討します。 また、Google Workspace の導入におけるチェンジ マネジメントの重要性についても説明します。チェンジ マネジメントにより、ユーザーは Google Workspace にスムーズに移行できるようになり、コミュニケーション、サポート、トレーニングを通じて働き方の変革のメリットを得ることができます。 このコースでは、理論的なトピックを取り上げます。実践的な演習は行いません。Google Workspace のトライアルをまだキャンセルしていない場合は、今すぐ行い、不要な料金が発生しないようにしてください。

詳細

Moving to the cloud creates numerous opportunities to start working in a new way and it empowers the workforce to better collaborate and innovate. But it’s also a big change. Sometimes the success of the change hinges not on the change itself, but on how it’s managed. This course will help people managers to understand some of the key challenges associated with cloud adoption, and provide them with a verified in-the-field framework that will assist them in supporting their teams on the change journey. By addressing the human factor of moving to the cloud, organizations increase their chances of realizing business objectives and investing in their future talent.

詳細

AI と ML は、幅広い業種に急速な変革をもたらしているインフォメーション テクノロジーにおける重要な進化です。「Google Cloud の AI を活用したイノベーション」では、AI と ML を活用して組織でビジネス プロセスを変革する方法について学習します。 このコースは クラウド デジタル リーダー 学習プログラムの一部で、個人が自分の役割において成長し、ビジネスの未来を構築することを目的としています。

詳細

この入門レベルのマイクロラーニング コースでは、生成 AI の概要、利用方法、従来の機械学習の手法との違いについて説明します。独自の生成 AI アプリを作成する際に利用できる Google ツールも紹介します。

詳細

このコースでは、機械翻訳、テキスト要約、質問応答などのシーケンス ツー シーケンス タスクに対応する、強力かつ広く使用されている ML アーキテクチャである Encoder-Decoder アーキテクチャの概要を説明します。Encoder-Decoder アーキテクチャの主要なコンポーネントと、これらのモデルをトレーニングして提供する方法について学習します。対応するラボのチュートリアルでは、詩を生成するための Encoder-Decoder アーキテクチャの簡単な実装を、TensorFlow で最初からコーディングします。

詳細

このコースでは、アテンション機構について学習します。アテンション機構とは、ニューラル ネットワークに入力配列の重要な部分を認識させるための高度な技術です。アテンションの仕組みと、アテンションを活用して機械翻訳、テキスト要約、質問応答といったさまざまな ML タスクのパフォーマンスを改善する方法を説明します。

詳細

Google Cloud 上の Gemini 1.0 Pro モデルとアプリケーションの統合に関する短いコースです。ここでは、Gemini API とその生成 AI モデルについて学習し、Gemini 1.0 Pro モデルと Gemini 1.0 Pro Vision モデルにコードからアクセスする方法を学びます。これらのモデルの機能は、アプリからのテキスト、画像、動画のプロンプトを使用してテストできます。

詳細

このコースでは、生成 AI を活用した Google Cloud のコラボレーターである Gemini が、顧客データの分析や商品売上の予測にどのように役立つかについて学びます。また、BigQuery で顧客データを使用して、新規顧客を特定、分類、発見する方法も学習します。ハンズオンラボでは、Gemini でデータ分析と ML のワークフローがどのように向上するかを体験します。 Duet AI は、次世代モデルである Gemini に名称変更されました。

詳細

このコースでは、Google Cloud の生成 AI を活用したコラボレーターである Gemini が、Google のプロダクトとサービスを使用してアプリケーションを開発、テスト、デプロイ、管理するうえでどのように役立つかを学習します。Gemini を利用して、ウェブ アプリケーションを開発および構築する方法、アプリケーションのエラーを修正する方法、テストを作成する方法、データをクエリする方法を学びます。ハンズオンラボでは、Gemini を使用することでソフトウェア開発ライフサイクル(SDLC)がどのように向上するかを体験します。 Duet AI は、次世代モデルである Gemini に名称変更されました。

詳細

Gemini for Google Workspace は、Google Workspace の生成 AI 機能をお客様に提供するアドオンです。このミニコースでは、Gemini の主な機能と、それらの機能を使用して Gmail の生産性と効率を向上させる方法について学びます。

詳細

このコースでは、生成 AI を活用した Google Cloud のコラボレーターである Gemini が、ネットワーク エンジニアによる VPC ネットワークの作成、更新、管理にどのように役立つかについて学びます。検索エンジンで調べられる内容を超えた、自身のネットワーキング タスクに固有のガイダンスの提供を Gemini に指示する方法を学習します。ハンズオンラボでは、Gemini を使用することで Google Cloud VPC ネットワークの作業がどのように簡単になるかを体験します。 Duet AI は、次世代モデルである Gemini に名称変更されました。

詳細

このコースでは、Google Cloud の生成 AI を活用したコラボレーターである Gemini が、エンジニアによるインフラストラクチャの管理にどのように役立つかについて学習します。アプリケーション ログを検索して理解するように Gemini に指示する方法、GKE クラスタを作成する方法、ビルド環境の作成方法を調査する方法を学びます。ハンズオンラボでは、Gemini を使用することで DevOps ワークフローがどのように向上するかを体験します。 Duet AI は、次世代モデルである Gemini に名称変更されました。

詳細

このコースでは、生成 AI を活用した Google Cloud のコラボレーター、Gemini が、デベロッパーのアプリケーション構築にどのように役立つかについて学びます。コードの説明、Google Cloud サービスの提案、アプリケーションのコード生成を Gemini に指示する方法について学びます。ハンズオンラボを使用して、Gemini でアプリケーション開発ワークフローがどのように向上するかを体験します。 Duet AI は、次世代モデルである Gemini に名称変更されました。

詳細

このコースでは、Google Cloud の生成 AI を活用したコラボレーターである Gemini が、管理者によるインフラストラクチャのプロビジョニングにどのように役立つかについて学習します。Gemini にプロンプトを入力して、インフラストラクチャの説明、GKE クラスタのデプロイ、既存のインフラストラクチャの更新についての情報を取得する方法を学びます。ハンズオン ラボでは、Gemini を使用することで GKE のデプロイ ワークフローがどのように向上するかを体験します。 Duet AI は、Google の次世代モデルである Gemini に名称変更されました。

詳細

Gemini for Google Workspace は、生成 AI 機能へのアクセスをユーザーに提供するアドオンです。このコースでは、Google Meet での Gemini の機能について掘り下げます。動画レッスン、ハンズオン アクティビティ、実用的な例を通じて Google Meet の Gemini 機能を総合的に理解し、Gemini を使用した背景画像の生成、ビデオ通話の映りの改善、字幕翻訳の方法を学びます。このコースを修了すると、Google Meet で Gemini を自信を持って活用し、ビデオ会議の効果を最大限に高めるための知識とスキルを身に付けられます。

詳細

このコースでは、Google Cloud の生成 AI を活用したコラボレーターである Gemini が、クラウド環境とリソースを安全に保つうえでどのように役立つかを学習します。サンプル ワークロードを Google Cloud の環境にデプロイする方法、Gemini を使用してセキュリティ構成ミスを特定、修正する方法を学びます。ハンズオンラボでは、Gemini を使用することでクラウドのセキュリティ ポスチャーがどのように向上するかを体験します。 Duet AI は、次世代モデルである Gemini に名称変更されました。

詳細

Gemini for Google Workspace は、Google Workspace の生成 AI 機能をお客様に提供するアドオンです。この学習プログラムでは、Gemini の主な機能と、それらの機能を使用して Google Workspace の生産性と効率を向上させる方法について学びます。

詳細

Gemini for Google Workspace は、Google Workspace の生成 AI 機能をお客様に提供するアドオンです。このミニコースでは、Gemini の主な機能と、それらの機能を使用して Google スプレッドシートの生産性と効率を向上させる方法について学びます。

詳細

Gemini for Google Workspace は、生成 AI 機能へのアクセスをユーザーに提供するアドオンです。動画レッスン、ハンズオン アクティビティ、実用的な例を使用して、Gemini in Google ドキュメントの機能について詳しく説明します。Gemini を使用して、プロンプトに基づいて文書のコンテンツを生成する方法を学びます。また、Gemini を使用して、記述済みのテキストを編集し、全体的な生産性の向上を支援することも検討します。このコースを修了すると、自信を持って Gemini in Google ドキュメントを活用し、文章作成能力を向上させるための知識やスキルを身に付けることができます。

詳細

Gemini for Google Workspace は、Google Workspace の生成 AI 機能をお客様に提供するアドオンです。このミニコースでは、Gemini の主な機能と、それらの機能を使用して Google スライドの生産性と効率を向上させる方法について学びます。

詳細

生成 AI を使用してユーザーがより快適に検索できるようにすることで、ウェブサイトのナビゲーション エクスペリエンスを向上する。このコースでは、ウェブサイトに含まれるコンテンツをユーザーが見つけやすくするために、Vertex AI Search を使用して生成検索機能を提供する方法を学習します。また、ウェブサイト編集者として、生成 AI による提案を利用して短時間で効率的にコンテンツの翻訳や改善を行う方法も学びます。

詳細

このコースでは拡散モデルについて説明します。拡散モデルは ML モデル ファミリーの一つで、最近、画像生成分野での有望性が示されました。拡散モデルは物理学、特に熱力学からインスピレーションを得ています。ここ数年、拡散モデルは研究と産業界の両方で広まりました。拡散モデルは、Google Cloud の最先端の画像生成モデルやツールの多くを支える技術です。このコースでは、拡散モデルの背景にある理論と、モデルを Vertex AI でトレーニングしてデプロイする方法について説明します。

詳細

This course is an introduction to building forecasting solutions with Google Cloud. You start with sequence models and time series foundations. You then walk through an end-to-end workflow: from data preparation to model development and deployment with Vertex AI. Finally, you learn the lessons and tips from a retail use case and apply the knowledge by building your own forecasting models.

詳細

このコースでは、AI を活用した検索テクノロジー、ツール、アプリケーションについて学びます。ベクトル エンベディングを利用するセマンティック検索、セマンティック アプローチとキーワード アプローチを組み合わせたハイブリッド検索、グラウンディング対応 AI エージェントとして AI のハルシネーションを最小限に抑える検索拡張生成(RAG)をご紹介します。Vertex AI Vector Search を実践的な経験を積んで、インテリジェントな検索エンジンを構築しましょう。

詳細

このコースでは、生成 AI モデルのデプロイと管理において MLOps チームが直面する特有の課題に対処するために必要な知識とツールを提供し、AI チームが MLOps プロセスを合理化して生成 AI プロジェクトを成功させるうえで Vertex AI がどのように役立つかを説明します。

詳細

このコースでは、Google Cloud 上で本番環境の ML システムをデプロイ、評価、モニタリング、運用するための MLOps ツールとベスト プラクティスについて説明します。MLOps は、本番環境 ML システムのデプロイ、テスト、モニタリング、自動化に重点を置いた規範です。 受講者は、SDK レイヤで Vertex AI Feature Store のストリーミング取り込みを使用する実践的な演習を受けられます。

詳細

このコースは、Vertex AI Notebooks に関する入門コースです。Vertex AI Notebooks は Jupyter ノートブックをベースとした環境であり、データの準備からモデルのデプロイとモニタリングに至るまで ML のワークフロー全体をサポートする統合プラットフォームを提供します。このコースでは、(1)Vertex AI Notebooks の種類とそれぞれの機能、(2)Vertex AI Notebooks の作成と管理の方法について説明します。

詳細

このコースでは、生成 AI モデルとのやりとり、ビジネス アイデアのプロトタイプ作成、本番環境へのリリースを行うツールである Vertex AI Studio をご紹介します。現実感のあるユースケースや、興味深い講義、ハンズオンラボを通して、プロンプトの作成から成果の実現に至るまでのライフサイクルを詳細に学び、Gemini マルチモーダル アプリケーションの開発、プロンプトの設計、モデルのチューニングに Vertex AI を活用する方法を学習します。Vertex AI Studio を利用することで、生成 AI をプロジェクトに最大限に活かせるようになることを目指します。

詳細

「Generative AI Explorer - Vertex AI」コースには、 Google Cloud での生成 AI の使用方法に関する複数のラボが含まれます。ラボでは、Vertex AI PaLM API ファミリーの text-bison、chat-bison、 textembedding-gecko などのモデルの使用方法を確認し、プロンプト設計やベスト プラクティス、さらに Vertex AI を活用した アイディエーション、テキスト分類、テキスト抽出、テキスト要約について 学びます。また、 Vertex AI カスタム トレーニングによって基盤モデルをチューニングし、Vertex AI エンドポイントにデプロイする方法も学びます。

詳細

「Vertex AI の Gemini API で生成 AI を使ってみる」の中級スキルバッジを獲得すると、 テキスト生成、画像と動画の分析によるコンテンツ作成の強化、Gemini API 内での関数呼び出し手法の適用といったスキルを実証できます。 Gemini の高度な手法の活用、マルチモーダル コンテンツの生成、AI を活用したプロジェクトの機能拡張を行う方法を学びましょう。

詳細

「Gemini と Streamlit を使用した生成 AI アプリの開発」の中級スキルバッジを獲得すると、 テキストの生成、Python SDK と Gemini API を使用した関数呼び出し、Cloud Run を使用した Streamlit アプリケーションのデプロイといったスキルを実証できます。 ここでは、Gemini にテキスト生成のプロンプトを与えるさまざまな方法を確認し、Cloud Shell を使用して Streamlit アプリケーションのテストとイテレーションを行い、Cloud Run にデプロイされる Docker コンテナとしてパッケージ化します。

詳細

Earn a skill badge by completing the Build Custom Processors with Document AI course. You learn how to extract data and classify documents by creating custom ML models specific to your business needs. This course teaches the foundation skills of building your own processors, working with optical character recognition, form parsing, processor creation, and uptraining the DocumentAI model.

詳細

Complete the introductory Build LangChain Applications using Vertex AI skill badge to learn how to build Generative AI applications using LangChain and the Retrieval Augmented Generation (RAG) technique for text-based content, powered by Vertex AI's advanced Generative AI capabilities. Discover how to integrate powerful large language models (LLMs) with search and retrieval workflows, boosting the accuracy and relevance of your generated content. Earn a Google Cloud skill badge and showcase your expertise by completing the course and its final assessment challenge lab.

詳細

Natural Language API で感情分析を行うクエストを完了してスキルバッジを獲得しましょう。 このクエストでは、API が感情をどのようにしてテキストから感情を導きすかを学びます。

詳細

「Apps Script を使用して BigQuery データと Google Workspace を統合する」スキルバッジを獲得できる入門コースを修了すると、 AppSheet を介して Workspace プロダクトを BigQuery に接続するスキルを証明できます。

詳細

Want to scale your data analysis efforts without managing database hardware? Learn the best practices for querying and getting insights from your data warehouse with this interactive series of BigQuery labs. BigQuery is Google's fully managed, NoOps, low cost analytics database. With BigQuery you can query terabytes and terabytes of data without having any infrastructure to manage or needing a database administrator. BigQuery uses SQL and can take advantage of the pay-as-you-go model. BigQuery allows you to focus on analyzing data to find meaningful insights.

詳細

「Dataplex を使用したデータメッシュの構築」入門コースを修了してスキルバッジを獲得すると、Dataplex を使用してデータメッシュを構築し、 Google Cloud 上のデータ セキュリティ、ガバナンス、検出を強化するスキルを実証できます。このコースでは、Dataplex でアセットにタグを付け、IAM ロールを割り当て、データ品質を評価する方法を練習し、そのスキルをテストします。

詳細

「Gemini と Imagen を使用した実際の AI アプリケーションの構築」入門スキルバッジを取得して、画像認識、自然言語処理、 Google の強力な Gemini モデルと Imagen モデルを使用した画像生成、Vertex AI プラットフォームへのアプリケーションのデプロイなどのスキルを証明しましょう。

詳細

「Vertex AI におけるプロンプト設計」スキルバッジを獲得できる入門コースを修了すると、 Vertex AI のプロンプト エンジニアリング、画像分析、マルチモーダル生成手法のスキルを実証できます。効果的なプロンプトを作成する方法、目的どおりの生成 AI 出力を生成する方法、 Gemini モデルを実際のマーケティング シナリオに適用する方法を学びます。

詳細

「Google Cloud Speech API を使用する」スキルバッジコースを修了して スキルバッジを獲得しましょう。このコースでは、Speech-to-Text API リクエストの作成、音声の文字起こし、 音声文字変換、音声の文字起こしを学べます。

詳細

API を使用して Cloud Storage を操作する入門スキルバッジを終了すると Cloud Storage API を含む、API を使用してCloud Storage リソースを操作するスキルを証明できます。

詳細

「Google Cloud コンピューティングの基礎」クエストを修了してスキルバッジを獲得しましょう。 クエストでは、Compute Engine を使用して、仮想マシン(VM)、永続ディスク、ウェブサーバーを操作する方法を学習します。

詳細

「Sensitive Data Protection を使ってみる」コースを修了して初級 スキルバッジを獲得すると、Sensitive Data Protection サービス (Cloud Data Loss Prevention API を含む)を使用して、Google Cloud 上の機密データを検査、秘匿化、匿名化するためのスキルを実証できます。

詳細

「Cloud Vision API を使用して画像を解析する」コースを修了するとスキルバッジを獲得できます。このコースでは、画像からのテキスト抽出など、さまざまなタスクで Cloud Vision API を活用する方法を学びます。

詳細

「BigLake データの保護」入門スキルバッジ コースを修了すると、Dataplex 内の IAM、BigQuery、BigLake、 Data Catalog を使用して BigLake テーブルを作成し、保護するスキルを証明できます。

詳細

メタデータの拡充と BigLake データの検出スキルバッジ コースを修了すると、BigQuery、BigLake、 Dataplex Universal Catalog のスキルを証明できます。BigLake テーブルを作成し、メタデータ管理とテーブルデータの検出を強化できます。

詳細

「Cloud Storage での安全なデータレイクの作成」スキルバッジ コースを修了すると、次のスキルを実証できます。 Cloud Storage バケットのセキュリティ確保と設定、Gemini を使用したテキスト生成、IAM アクセス制御の管理、データ ガバナンスのための Dataplex レイクの確立などです。

詳細

「Google API を使用して音声と言語を分析する」コースを修了してスキルバッジを獲得しましょう。 このコースでは、Natural Language and Speed API を実際の環境で使用する方法を 学習します。

詳細

「Eventarc を使ってみる」を修了して、スキルバッジを獲得しましょう。 このスキルバッジ コースでは、Eventarc を使用して Pub/Sub トピックや Cloud Storage バケットなどのさまざまなリソースのイベント トリガーを作成します。

詳細

「ストリーミング分析を BigQuery に読み込む」 スキルバッジ コースを修了してスキルバッジを獲得し、ストリーミングで Pub/Sub、Dataflow、BigQuery を組み合わせて 分析のためにデータをストリーミングしましょう。

詳細

「API Gateway を使ってみる」スキルバッジ コースを修了してスキルバッジを獲得しましょう。 このコースでは、API Gateway を使用して、フルマネージド ゲートウェイを API のデプロイ、保護、管理に活用する方法を 学びます。

詳細

「AppSheet を使用したアプリ作成」コースを修了すると、スキルバッジを獲得できます。 このコースでは、AppSheet を使用してアプリを構築、構成、公開する方法を学びます。

詳細

Earn a skill badge by completing the Detect Manufacturing Defects using Visual Inspection AI course, where you learn how to use Visual Inspection AI to deploy a solution artifact and test that it can successfully identify defects in a manufacturing process.

詳細

「Google スプレッドシートで関数、数式、グラフを使う」中級コースを修了して スキルバッジを獲得すると、 関数を使用したデータの分析、グラフを使用したデータの可視化、およびデータの検索、 検証、フォーマット設定、表示に関するスキルを証明できます。

詳細

「コネクテッド シートで BigQuery データを分析する」スキルバッジ コースを修了すると、コネクテッド シートを使用して Google スプレッドシートから数十億行の BigQuery データにアクセスし、分析、可視化、共有できるようになります。

詳細

中級コース「BigQuery で予測データ分析を行う」を修了してスキルバッジを取得すると、 CSV ファイルや JSON ファイルをインポートして BigQuery にデータセットを作成し、 BigQuery の高度な SQL 分析機能を活用してデータを分析するスキルを身につけていることを示せます。たとえば、BigQuery ML を使って サッカーの試合イベント データをもとに予想得点モデルをトレーニングし、ワールドカップで決まったそれぞれのゴールがどれほど「予想外ですごかった」かを評価することなどが可能になります。

詳細

「BigQuery でデータ ウェアハウスを構築する」スキルバッジを獲得できる中級コースを修了すると、 データの結合による新しいテーブルの作成、結合のトラブルシューティング、UNION を使用したデータの連結、日付パーティション分割テーブルの作成、 BigQuery での JSON、配列、構造体の操作に関するスキルを証明できます。

詳細

「Security Command Center による脅威と脆弱性の緩和」の中級コースを修了してスキルバッジを獲得することで、 次のスキルを実証できます。 環境の脅威の防止と管理、アプリケーションの脆弱性の特定と軽減、 セキュリティ異常に対応。

詳細

「Google データクラウドを使用してデータを共有する」スキルバッジ コースを修了して、スキルバッジを獲得しましょう。 このコースでは、Google Cloud の データ共有パートナーに関する実践的な経験を積むことができます。これらのパートナーは、顧客が分析ユースケースで活用できる独自のデータセットを 保有しています。顧客は、このデータをサブスクライブし、自身のプラットフォーム内で クエリを実行し、それを独自のデータセットで拡張して、 可視化ツールを使用して顧客向けのダッシュボードを作成します。

詳細

「Cloud Storage でのストリーミング データレイクの作成」コースを修了してスキルバッジを獲得しましょう。 このコースでは、Pub/Sub、Dataflow、Cloud Storage を併用して Google Cloud 上でストリーミング データレイクを作成します。

詳細

「Cloud Storage を使ってみる」スキルバッジ コースを修了してスキルバッジを獲得しましょう。 このコースでは、Cloud Storage バケットの作成方法、 Cloud Storage コマンドラインの使用方法、バケットロックを使用してバケットでオブジェクトを保護する方法を 学ぶことができます。

詳細

「Google Cloud のサービス アカウントと IAM ロールを構成する」コースを修了して入門レベルのスキルバッジを獲得しましょう。このコースでは、サービス アカウントやカスタムロールについてと、gcloud を使用して権限を設定する方法について学びます。

詳細

「Google Cloud におけるモニタリング」入門スキルバッジ コースを修了すると、 Google Cloud のリソースをモニタリングするための Cloud Monitoring ツールの使用」のスキルを習得できます。

詳細

「Google Cloud リソースのモニタリングと管理」入門スキルバッジ コースを修了すると、IAM 権限の付与と取り消し、 モニタリング エージェントとロギング エージェントのインストール、イベント ドリブンな Cloud Run 関数 の作成、デプロイ、テストなどのスキルが証明されます。

詳細

「Looker でのデータモデルの管理」スキルバッジを獲得できる中級コースを修了すると、 次のスキルを身につけていることを実証できます。LookML プロジェクトを健全に維持する、SQL Runner を利用してデータを検証する、 LookML のベスト プラクティスを実践する、パフォーマンス向上のためにクエリとレポートを最適化する、 永続的な派生テーブルとキャッシュ保存ポリシーを実装する。

詳細

「Looker での LookML オブジェクトの構築」スキルバッジを獲得できる入門コース を修了すると、 新しいディメンション、メジャー、ビュー、派生テーブルの構築、要件に基づくメジャー フィルタとメジャー タイプの設定、 ディメンションとメジャーの更新、 Explore の構築と改良、ビューと既存の Explore との結合、 ビジネス要件に基づいて作成すべき LookML オブジェクトの決定に関するスキルがあることを証明できます。

詳細

「Looker を使ってみる」クエストを修了すると スキルバッジを獲得できます。 このクエストでは、Looker Studio と Looker を使用してデータを分析、可視化、キュレートする方法 を学びます。

詳細

「Looker ダッシュボードとレポート用にデータを準備する」スキルバッジを獲得できる入門コースを修了すると、 データのフィルタ、並べ替え、ピボット、異なる Looker Explore から取得した結果の統合、 関数と演算子を使用してデータを分析し可視化するための Looker ダッシュボードとレポートの作成に関するスキルを実証できます。

詳細

「Pub/Sub を使ってみる」クエストを修了すると スキルバッジを獲得できます。 このクエストでは、Cloud コンソールでの Pub/Sub の使用方法、Cloud Scheduler ジョブで作業を効率化する方法、 大量のイベント取り込みで Pub/Sub Lite を使用してコストを 削減できるタイミングについて学習します。

詳細

Earn a skill badge by completing the Networking Fundamentals on Google Cloud quest, where you learn how to work with VPC networks and load balancers on Google Cloud. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete this Skill Badge, and the final assessment challenge lab, to receive a digital badge that you can share with your network.

詳細

「Google Workspace ツールを使ってみる」コースを修了して入門レベルのスキルバッジを獲得しましょう。このコースでは、 Google のコラボレーション プラットフォームの概要と、 Gmail、カレンダー、Meet、ドライブ、スプレッドシート、AppSheet の使用方法を学びます。

詳細

Workspace は、Google Cloud で提供されている Google の共同作業用アプリケーション スイートです。この入門レベルのコースでは、 ユーザーの視点で Workspace の主要なアプリケーションの実践演習を行います。Workspace には、 ここで取り上げるもの以外にも、多くのアプリケーションやツールが含まれますが、 ここでは Gmail、カレンダー、スプレッドシートなど、いくつかの主要アプリを 体験します。各ラボの所要時間は 10~15 分ですが、ご自身でご自由に アプリケーションの操作を試すための時間も用意されています。

詳細

音声関連の API ツールを使用して、音声の合成と文字起こしを行う方法を学ぶ「Cloud Speech API: 3 つの方法」コースを修了して 初級スキルバッジを獲得しましょう。

詳細

「Apps Script と AppSheet を使用した開発」コースを修了して、スキルバッジを獲得しましょう。このコースでは、chat bot の構築方法と、 任意のドキュメントでの使用方法を学びます。

詳細

Gemini によるマルチモダリティとマルチモーダル RAG を使用したリッチ ドキュメントの検査 スキルバッジを獲得できる中級コースを修了すると、次のスキルを実証できます。 Gemini を使用したマルチモダリティにより、マルチモーダル プロンプトを使用してテキストと視覚データから情報を抽出し、動画の説明を生成して、 動画の範囲を超えた追加情報を取得する。Gemini を使用したマルチモーダル検索拡張生成(RAG)により、テキストと画像を含むドキュ引用を出力する。

詳細

「Google Cloud での Kubernetes の管理」コースの中級スキルバッジを獲得できるアクティビティを修了すると、 kubectl を活用したデプロイの管理、 Google Kubernetes Engine(GKE)でのアプリケーションのモニタリングとデバッグ、継続的デリバリーの手法におけるスキルを実証できます。

詳細

「Dataplex を使ってみる」コースを修了して初級スキルバッジを獲得することで、 Dataplex アセットの作成、アスペクト タイプの作成、 Dataplex のエントリへのアスペクトの適用に関するスキルを実証できます。

詳細

「BigQuery のデータから分析情報を引き出す」の入門スキルバッジを獲得すると、 SQL クエリの作成、一般公開テーブルに対するクエリの実行、BigQuery へのサンプルデータの読み込み、BigQuery でのクエリ バリデータを使用した一般的な構文エラーのトラブルシューティング、 BigQuery データへの接続による Looker Studio でのレポート作成といったスキルを実証できます。

詳細

このコースでは、Google Cloud の上級ユーザーを対象に、 Terraform を使用してクラウド リソースを記述し、リリースする方法を説明します。 Terraform は、API を宣言的な構成ファイルにコード化するオープンソースのツールです。 構成ファイルは、チームメンバー間で共有したり、コードとして扱ったりできます。また、編集、レビュー、バージョン管理もできます。これらの ハンズオンラボでは、サンプル テンプレートを使用して、 シンプルなサーバーから、完全にロードバランスされたアプリケーションまで、さまざまな構成をリリースする方法を 学びます。

詳細

これは、Google Cloud の請求管理と費用管理の基礎を学ぶ、2 部構成シリーズの 2 つ目の コースです。このコースは、財務 または IT の担当者で組織のクラウド インフラストラクチャの最適化を担う方に最適です。 ここでは、 予算とアラートの設定、割り当て上限の管理、確約利用割引の活用など、Google Cloud の費用を管理および最適化する方法を いくつか学びます。ハンズオンラボでは、さまざまな ツールを実際に使って Google Cloud の費用を管理および最適化したり、 費用を最適化するためのベスト プラクティスを採用するよう技術チームに働きかけたりします。

詳細

Contact Center AI の中核となるのはその会話力です。人間と同じような対応ができるので、AI を活用した会話の可能性が広がります。このクエストでは、仮想エージェントの構築方法のほか、仮想エージェントの会話フローの設計方法、仮想エージェントへの電話ゲートウェイの追加方法を学びます。最後のチャレンジラボも含め、このクエストを修了すると、Google Cloud の限定デジタルバッジを獲得できます。チャレンジラボには詳細な手順説明はありませんが、最小限のガイダンスを基にソリューションを構築することが求められ、Google Cloud テクノロジーのスキルがテストされます。

詳細

For everyone using Google Cloud Platform for the first time, getting familar with gcloud, Google Cloud's command line, will help you get up to speed faster. In this quest, you'll learn how to install and configure Cloud SDK, then use gcloud to perform some basic operations like creating VMs, networks, using BigQuery, and using gsutil to perform operations.

詳細

Vertex AI での ML ソリューションの構築とデプロイ コースを修了して、 中級スキルバッジを獲得しましょう。このコースでは、Google Cloud の Vertex AI プラットフォーム、AutoML、カスタム トレーニング サービスを使用して、 ML モデルのトレーニング、評価、チューニング、説明、デプロイを行う方法を学びます。 このスキルバッジ コースは、データ サイエンティストと ML エンジニアのプロフェッショナルを 対象としています。 スキルバッジは、Google Cloud のプロダクトとサービスの習熟度を示す Google Cloud 発行の限定デジタルバッジで、 インタラクティブなハンズオン環境での知識の応用力を証明するものです。このスキルバッジと 最終評価チャレンジラボを完了し、デジタルバッジを獲得して ネットワークで共有しましょう。

詳細

「Bigtable インスタンスの作成と管理」入門コースを修了してスキルバッジを獲得すると、インスタンスの作成、スキーマの設計、 データのクエリ、Bigtable での管理タスク実行(パフォーマンスのモニタリング、ノードの自動スケーリングとレプリケーションの構成など)のスキルを実証できます。

詳細

「App Engine: 3 つの方法」コースを修了してスキルバッジを獲得しましょう。 このコースでは、Python、Go、PHP で App Engine を使用する方法を学びます。

詳細

Google Cloud Application Programming Interfaces は、Google Cloud Services とプログラムでインタラクトするメカニズムです。このクエストは、GCP API のハンズオン演習を提供し、APIをブラウズして、実行するツールである Google の API Explorerを通して学習します。クラウドのストレージ間でのデータ移行の方法、コンピュートエンジンインスタンスのデプロイ、Dataprocクラスタの設定などを学ぶことにより、API が強力で、なぜGCPユーザが使用しているかを理解できます。

詳細

Cloud SQL is a fully managed database service that stands out from its peers due to high performance, seamless integration, and impressive scalability. In this quest you will receive hands-on practice with the basics of Cloud SQL and quickly progress to advanced features, which you will apply to production frameworks and application environments. From creating instances and querying data with SQL, to building Deployment Manager scripts and connecting Cloud SQL instances with applications run on GKE containers, this quest will give you the knowledge and experience needed so you can start integrating this service right away.

詳細

この入門レベルのコースでは、アプリケーション開発者を対象に、Google Cloud のエコシステムを使用して安全、スケーラブル、インテリジェントなクラウドネイティブ アプリケーションを構築する方法を説明 します。インフラストラクチャの設定を行わずにアプリケーションの開発やスケーリングを行う方法、 データ分析を実施する方法、データから分析情報を得る方法、トレーニング済み ML の API を使って開発し、ML のエキスパートでなくても ML を活用する方法を学びます。 また、さまざまな Google サービスや API とのシームレスな統合を利用して、 インテリジェントなアプリを作成します。

詳細

このクエストでは、ウェブサイトが利用可能でスケーラブルであることを確認するために使用できる 4 つの Google Cloud ウェブサイト アーキテクチャについて学習します。 ハンズオンラボでスキルや知識を試したいですか?Build a Website on Google Cloud クエストの最後にあるチャレンジラボに登録し、完了した際には Google Cloud 限定デジタルバッジを獲得できます。このクエストは、Get Cooking in Cloud のビデオシリーズに基づいています。

詳細

DevOps によって 競争優位性を確保します。DevOps とは、ソフトウェア デリバリーを迅速化し、サービスの信頼性を向上させ、 ソフトウェアの開発と運用に影響を与えるステークホルダーの間で共有の当事者意識を高めることを目的とする、組織的、 文化的な考え方や取り組みです。このクエストでは、Google Cloud を使用して ソフトウェア デリバリーの速度、安定性、可用性、安全性を向上させる方法を学びます。 DevOps Research and Assessment チームが Google Cloud に加わりました。自社の DevOps チームの実力はいかがですか? 5 問の多肢選択式テストで評価してみましょう。

詳細

ネットワーキングはクラウド コンピューティングにおける主要なテーマです。Google Cloud の基盤となる 構造であり、すべてのリソースとサービスを 相互に接続するものです。このコースでは、Google Cloud の基本的なネットワーキング サービスについて学び、 優れたネットワークを開発するための専用ツールを使用して実践演習を 行います。VPC についての詳細な学習から、エンタープライズ クラスのロードバランサの作成まで、 「Google Cloud ネットワークにおけるデプロイの自動化とトラフィックの管理」では、 堅牢なネットワークを今すぐ構築するために必要となる実践的な経験を積むことができます。

詳細

セキュリティは、Google Cloud のサービスにおける妥協のない機能であり、これを念頭に、 プロジェクトをまたいで安全性を確保し ID を保護するための専用ツールが 開発されています。この入門コースでは、 ユーザー アカウントと仮想マシン アカウントの管理における主要機能である Google Cloud の Identity and Access Management(IAM)サービス の実践演習を行います。VPC と VPN のプロビジョニングを通してネットワーク セキュリティを実際に体験し、セキュリティ 脅威とデータ損失防止に使用できるツールについて学びます。

詳細

TensorFlow is an open source software library for high performance numerical computation that's great for writing models that can train and run on platforms ranging from your laptop to a fleet of servers in the Cloud to an edge device. This quest takes you beyond the basics of using predefined models and teaches you how to build, train and deploy your own on Google Cloud.

詳細

大規模なコンピューティング能力を使用してパターンを認識し、 画像を「読み取る」ことは、自動運転車や顔認識に使用される AI の基盤技術の一つです 。 Google Cloud Platform は、 API を呼び出すだけで利用できるシステムを通じて、ワールドクラスの速度と精度を提供します。 こうした機能とさまざまな API を備えた GCP のツールを使えば、 ほぼあらゆる ML ジョブに対応できます。 この入門コースでは、 画像処理に用いられる ML の実践的な演習を行います。 ラボを活用して、画像にラベルを付けたり、顔やランドマークを検出したり、 画像内のテキストを抽出、分析、翻訳したりすることができます。

詳細

ML は、IT 分野で最も急速に成長している技術の一つであり、Google Cloud Platform はその発展に大きく貢献してきました。 Google Cloud では多数の API により、ほぼすべての ML ジョブに対応するツールを提供しています。 この入門コースでは、ラボを通じて言語処理に活用できる ML の実践演習を行います。 これにより、テキストからのエンティティの抽出、 感情分析と構文解析、音声文字変換のための Speech-to-Text API の使用方法を学ぶことができます。

詳細

In this quest you will get hands-on experience writing infrastructure as code with Terraform.

詳細

このクエストでは、セキュリティ、ユーザーとグループのプロビジョニング、アプリケーションや Google Meet の管理といった、Google Workspace 管理に関するいくつかのトピックについての実践演習を行います。

詳細

Firebase is a backend-as-service (Bass) platform for creating mobile and web applications. In this quest you will learn to build serverless web apps, import data into a serverless database, and build a Google Assistant application with Firebase and its Google Cloud integrations. Looking for a hands on challenge lab to demonstrate your skills and validate your knowledge? On completing this quest, enroll in and finish the additional challenge lab at the end of this quest to receive an exclusive Google Cloud digital badge.

詳細

This course offers hands-on practice with migrating MySQL data to Cloud SQL using Database Migration Service. You start with an introductory lab that briefly reviews how to get started with Cloud SQL for MySQL, including how to connect to Cloud SQL instances using the Cloud Console. Then, you continue with two labs focused on migrating MySQL databases to Cloud SQL using different job types and connectivity options available in Database Migration Service. The course ends with a lab on migrating MySQL user data when running Database Migration Service jobs.

詳細

Learn the ins and outs of Google Cloud's operations suite, an important service for generating insights into the health of your applications. It provides a wealth of information in application monitoring, report logging, and diagnoses. These labs will give you hands-on practice with and will teach you how to monitor virtual machines, generate logs and alerts, and create custom metrics for application data. It is recommended that the students have at least earned a Badge by completing the Google Cloud Essentials. Looking for a hands on challenge lab to demonstrate your skills and validate your knowledge? On completing this course, enroll in and finish the challenge lab at the end of the Monitor and Log with Google Cloud Operations Suite to receive an exclusive Google Cloud digital badge.

詳細

機械学習はもっとも迅速に成長しているテクノロジーの分野です。Google Cloud Platformは、その成長に一役かっています。APIのホストを使うことにより、GCPにはツールがあります。この上級レベルのクエストでは、「Implementing an AI Chatbot with Dialogflow」や「Detect Labels, Faces, and Landmarks in Images with the Cloud Vision API」と同様に機械学習APIについてハンズオンで演習ができます。

詳細

Kubernetes は最も人気のあるコンテナ オーケストレーション システムであり、Google Kubernetes Engine は特に Google Cloud でマネージド Kubernetes Deployment をサポートするよう 設計されています。この上級レベルのコースでは、 Docker イメージとコンテナを構成し、本格的な Kubernetes Engine アプリケーションをデプロイする実践演習を行います。 また、コンテナ オーケストレーションを独自のワークフローに統合するために必要な 実践的なスキルを学びます。 ハンズオン チャレンジラボを受講して、 スキルを証明し、知識を確認することもできます。このコースの修了後、 Google Cloud での Kubernetes アプリケーションのデプロイコースの 最後にあるチャレンジラボを追加で完了して、Google Cloud の限定デジタルバッジを獲得しましょう。

詳細

この基礎レベルの クエスト は他の Qwiklabs 製品の中でもユニークです。これらのラボは、Google Cloud Certified Professional Cloud Architect 認定資格試験に出題されるトピックやサービスについて、 IT プロフェッショナルがハンズオンで演習するために作成されました。 IAM からネットワーキング、Kubernetes engine のデプロイまで、Goodle Cloud の知識が試される特定のラボで構成されています。これらのラボでの演習は スキルや能力の向上に役立ちますが、試験ガイドやその他の対策資料も参照することをお勧めします。

詳細

これは、Google Cloud Essentials よりもレベルの高い内容の練習機会を求めている初心者のクラウド デベロッパーに おすすめのコースです。Cloud Storage だけでなく、 Monitoring や Cloud Run functions などの主要なアプリケーション サービスに関連するラボを通して、 実践的な経験を積むことが可能です。また、 あらゆる Google Cloud イニシアチブに応用できる有益なスキルを身に付けることができます。

詳細

この入門レベルのコースでは、 Google Cloud の基本的なツールやサービスに関する実践演習を行います。オプションで動画も提供されており、 ラボで取り上げられたコンセプトに関するさらなるコンテキストの確認や、復習に利用できます。「Google Cloud の基礎」は、Google Cloud の学習者に最初に推奨されるコースです。 クラウドの予備知識がほとんどなくても、 最初の Google Cloud プロジェクトに応用できる実践的な経験を積むことができます。Cloud Shell コマンドの記述、 初めての仮想マシンのデプロイ、Kubernetes Engine 上でのアプリケーションの実行や ロード バランシングなど、「Google Cloud の基礎」では、Google Cloud の 基本的な機能について学ぶことができます。

詳細

この入門コースは、他のコースとは異なるものです。 これらのラボは、Google Cloud Certified Associate Cloud Engineer 認定資格試験に出題されるトピックやサービスについて、IT プロフェッショナルがハンズオンで演習するために作成されました。IAM からネットワーキング、 Kubernetes Engine のデプロイまでを 網羅する個別のラボで構成されており、Goodle Cloud の知識が試されます。これらのラボによる演習で 知識やスキルや能力を向上させることは可能ですが、 試験ガイドやその他の対策資料も参照することをおすすめします。

詳細

ビッグデータ、ML、AI は今日のコンピュータ業界ではホットなトピックですが、 これらの分野は非常に専門性が高く、 入門レベルの教材を見つけるのは困難です。幸いなことに、Google Cloud はこうした分野でユーザー フレンドリーなサービスを提供しており、 この入門レベルのコースを通じて、BigQuery、Cloud Speech API、 Video Intelligence などのツールを使い始めるための第一歩を踏み出せます。

詳細

In this course you will learn how to use several BigQuery ML features to improve retail use cases. Predict the demand for bike rentals in NYC with demand forecasting, and see how to use BigQuery ML for a classification task that predicts the likelihood of a website visitor making a purchase.

詳細

This advanced-level quest is unique amongst the other catalog offerings. The labs have been curated to give IT professionals hands-on practice with topics and services that appear in the Google Cloud Certified Professional Data Engineer Certification. From Big Query, to Dataprep, to Cloud Composer, this quest is composed of specific labs that will put your Google Cloud data engineering knowledge to the test. Be aware that while practice with these labs will increase your skills and abilities, you will need other preparation, too. The exam is quite challenging and external studying, experience, and/or background in cloud data engineering is recommended. Looking for a hands on challenge lab to demonstrate your skills and validate your knowledge? On completing this quest, enroll in and finish the additional challenge lab at the end of the Engineer Data in the Google Cloud to receive an exclusive Google Cloud digital badge.

詳細

SQL だけを使用して、数時間ではなく数分で ML モデルを構築したいとお考えの場合、BigQuery ML は、データ アナリストが既存の SQL ツールやスキルを使って、ML モデルを作成、トレーニング、 評価し、そのモデルで予測を行うことを可能にして、ML をより多くの人が利用できるようにします。 この一連のラボでは、さまざまなモデルタイプを試して、 優れたモデルを作成する方法を学習します。

詳細

「BigQuery ML を使用した ML モデルの作成」コースの中級スキルバッジを獲得できるアクティビティを修了すると、 BigQuery ML を使用して ML モデルを作成および評価し、データを予測するスキルを証明できます。

詳細

「BigQuery ML を使用した予測モデリング向けのデータ エンジニアリング」のスキルバッジを獲得できる中級コースを修了すると、 Dataprep by Trifacta を使用した BigQuery へのデータ変換パイプラインの構築、 Cloud Storage、Dataflow、BigQuery を使用した抽出、変換、読み込み(ETL)ワークフローの構築、 BigQuery ML を使用した ML モデルの構築に関するスキルを実証できます。

詳細

Cloud Run Functions: 3 つの方法コースを修了して、入門レベルのスキルバッジを獲得しましょう。 このコースでは、 Google Cloud コンソールとコマンドラインを通じた Cloud Run functions の使用方法を学ぶことができます。」

詳細

Cloud Storage、Cloud Functions、Cloud Pub/Sub はいずれも データの保存、処理、管理に使用できる Google Cloud プラットフォーム サービスです。この 3 種の サービスを併用してさまざまなデータドリブン アプリケーションを作成できます。この スキルバッジでは、Cloud Storage を使用して画像を保存し、Cloud Functions を使用して 画像を処理し、Cloud Pub/Sub を使用して画像を別のアプリケーションに送信します。

詳細

Cloud Storage、Cloud Functions、Cloud Pub/Sub はいずれも データの保存、処理、管理に使用できる Google Cloud プラットフォーム サービスです。この 3 種の サービスを併用してさまざまなデータドリブン アプリケーションを作成できます。この スキルバッジでは、Cloud Storage を使用して画像を保存し、Cloud Functions を使用して 画像を処理し、Cloud Pub/Sub を使用して画像を別のアプリケーションに送信します。

詳細

「Google Cloud の ML API 用にデータを準備」コースの入門スキルバッジを獲得できるアクティビティを修了すると、 Dataprep by Trifacta を使用したデータのクリーニング、Dataflow でのデータ パイプラインの実行、Dataproc でのクラスタの作成と Apache Spark ジョブの実行、 Cloud Natural Language API、Google Cloud Speech-to-Text API、Video Intelligence API などの ML API の呼び出しに関するスキルを証明できます。

詳細

In this advanced-level quest, you will learn how to harness serious Google Cloud computing power to run big data and machine learning jobs. The hands-on labs will give you use cases, and you will be tasked with implementing big data and machine learning practices utilized by Google’s very own Solutions Architecture team. From running Big Query analytics on tens of thousands of basketball games, to training TensorFlow image classifiers, you will quickly see why Google Cloud is the go-to platform for running big data and machine learning jobs.

詳細

「Google Cloud での TensorFlow を使用した画像の分類」スキルバッジ コースを修了して中級のスキルバッジを獲得しましょう。 このコースでは、TensorFlow と Vertex AI を使用して ML モデルを作成し、トレーニングします。主に Vertex AI Workbench ユーザー管理ノートブックを操作します。

詳細

「Document AI を使用して大規模なデータ キャプチャを自動化」コースを修了して、入門レベルのスキルバッジを獲得しましょう。このコースでは、 Document AI を使用してデータを抽出、処理、取得する方法を学びます。

詳細

「Google Cloud での ML の API の使用 」コースを修了して、上級スキルバッジを獲得しましょう。このコースでは、ML と AI テクノロジーを活用する 3 つの API(Cloud Vision API、Cloud Translation API、Cloud Natural Language API) の基本機能について学習します。

詳細

In this quest you will use a collection of Google APIs that are all related to language, and speech. You will use the Speech-to-Text API to transcribe an audio file into a text file, the Cloud Translation API to translate from one language to another, the Cloud Translation API to detect what language is being used and translate to a different language, the Natural Language API to classify text and analyze sentiment, and create synthetic speech.

詳細

Anthos を使ってみましょう。 この Google Kubernetes Engine 中心のベスト プラクティス ハンズオン ラボ シリーズでは、 GKE 本番環境をデプロイおよび管理する際のセキュリティのスケーリング に焦点を当てます。具体的には、ロールベース アクセス制御、セキュリティ強化、 VPC ネットワーキング、バイナリ承認について学びます。

詳細

Blockchain and related technologies, such as distributed ledger and distributed apps, are becoming new value drivers and solution priorities in many industries. In this course you will gain hands-on experience with distributed ledger and the exploration of blockchain datasets in Google Cloud. It brings the research and solution work of Google's Allen Day into self-paced labs for you to run and learn directly. Since this course uses advanced SQL in BigQuery, a SQL-in-BigQuery refresher lab is at the start.

詳細

Cloud Logging is a fully managed service that performs at scale. It can ingest application and system log data from thousands of VMs and, even better, analyze all that log data in real time. In this fundamental-level Quest, you learn how to store, search, analyze, monitor, and alert on log data and events from Google Cloud. The labs in the Quest give you hands-on practice using Cloud Logging to maximize your learning experience and provide insight on how you can use Cloud Logging to your own Google Cloud environment.

詳細

「Cloud Spanner インスタンスの作成と管理」スキルバッジを 獲得できる入門コースを修了すると、 Cloud Spanner のインスタンスとデータベースの作成と操作、 さまざまな手法による Cloud Spanner データベースの読み込み、 Cloud Spanner データベースのバックアップ、スキーマの定義、クエリプランの理解、 Cloud Spanner インスタンスに接続された最新ウェブアプリのデプロイといったスキルを実証できます。

詳細

「AlloyDB インスタンスの作成と管理」スキルバッジを獲得できる入門コースを修了すると、次のスキルを身につけていることを実証できます。AlloyDB の主なオペレーションと タスクを実行する、PostgreSQL から AlloyDB に移行する、AlloyDB データベースを管理する、 AlloyDB カラム型エンジンを使用して分析クエリを高速化する。

詳細

This quest introduces you to Vault and teaches you how to secure, store, and tightly control access to tokens, passwords, certificates, and encryption keys to protect secrets and other sensitive data.

詳細

「Chrome Enterprise Premium のセキュリティ機能を使用してクラウド トラフィックを保護する」スキルバッジ コースを修了して、スキルバッジを獲得しましょう。このコースでは、 Chrome Enterprise Premium を活用して重要なアプリやサービスへの安全なアクセスを提供する方法、最新の ゼロトラスト プラットフォームでセキュリティ ポスチャーを改善する方法、ID とコンテキスト アウェア アクセス制御を使用してリソースへのアクセスを安全に提供する方法、クライアント コネクタを使用してハイブリッド クラウド ワークロードをサポートする方法を学習します。

詳細

In this course you will learn how you to harness serious Google Cloud power and infrastructure. The hands-on labs will give you use cases and you will be tasked with implementing scaling practices utilized by Google’s very own Solutions Architecture team. From developing enterprise grade load balancing and autoscaling, to building continuous delivery pipelines, Google Cloud Solutions I: Scaling your Infrastructure will teach you best practices for taking your Google Cloud projects to the next level.

詳細

このクエストでは、セキュリティ、ユーザーとグループのプロビジョニング、アプリケーションや Google Meet の管理といった、Google Workspace 管理に関するいくつかのトピックについての実践演習を行います。

詳細

Google Cloud でのクラウド セキュリティの基礎の実践 スキルバッジを獲得できる中級コースを修了すると、 Identity and Access Management(IAM)でのロールの作成と割り当て、 サービス アカウントの作成と管理、Virtual Private Cloud(VPC)ネットワーク全体でのプライベート接続の有効化、 Identity-Aware Proxy を使用したアプリケーション アクセスの制限、Cloud Key Management Service(KMS)を使用した鍵と暗号化されたデータの管理、 限定公開 Kubernetes クラスタの作成に関するスキルを実証できます。

詳細

「Database Migration Service を使用した MySQL データの Cloud SQL への移行」入門スキルバッジ コースを完了すると、 Database Migration Service で利用可能なさまざまなジョブタイプと接続オプションを使用した、 MySQL データの Cloud SQL への移行や、 Database Migration Service ジョブを実行する際の MySQL ユーザーデータの移行などのスキルを証明できます。

詳細

「Cloud SQL for PostgreSQL インスタンスの作成と管理」入門スキルバッジ コースを完了すると、 Cloud SQL for PostgreSQL インスタンスとデータベースを移行、構成、管理するスキルを証明できます。

詳細

「Firebase を使用したサーバーレス アプリの開発」の中級スキルバッジを獲得すると、 Firebase を使用したサーバーレス ウェブ アプリケーションの設計とビルド、 データベース管理における Firestore の活用、Cloud Build を使用したデプロイ プロセスの自動化、 アプリケーションと Google アシスタント機能の統合といったスキルを実証できます。

詳細

安全な Google Cloud ネットワークの構築コースを修了してスキルバッジを獲得しましょう。このコースでは、Google Cloud でアプリケーションを ビルド、スケール、保護するための複数のネットワーク関連リソースについて学習します。

詳細

「Apigee X を使用した API の開発と保護」スキルバッジ コースを修了するとスキルバッジを獲得できます。 このコースでは、API をモダナイズする方法、サービス アカウントと Google 認証を使用して、Apigee API プロキシからバックエンド サービスに安全にアクセスする方法、 API プロダクトとデベロッパー ポータルを使用して API を製品化する方法、 API キー、OAuth、プライベート変数、障害の処理などの機能を使用して API を保護する方法、 Pub/Sub や Cloud Logging などの Google Cloud サービスと Apigee を統合する方法、 Natural Language API や Geocoding API などの Google Cloud の API を呼び出す方法を学習します。

詳細

Google Cloud Managed Service for Prometheus を使った Kubernetes 環境のモニタリングについて学ぶ 「Google Cloud Managed Service for Prometheus で環境をモニタリングする」コースを修了するとスキルバッジを獲得できます。

詳細

「Google Cloud でのウェブサイトの構築」スキルバッジ コースを修了して入門レベルの スキルバッジを獲得しましょう。 このコースは「Get Cooking in Cloud」シリーズに基づいており、次の内容を扱います。 Cloud Run でウェブサイトをデプロイするCompute Engine でウェブアプリをホストするGoogle Kubernetes Engine でウェブサイトを作成、デプロイ、 スケーリングするCloud Build を使用してモノリシック アプリケーションからマイクロサービス アーキテクチャに移行する

詳細

「Cloud Run でのサーバーレス アプリケーションの開発」コースの中級スキルバッジを獲得すると、 データ マネジメントのための Cloud Run と Cloud Storage の統合、 Cloud Run と Pub/Sub を使用した復元力のある非同期システムの構築、 Cloud Run を使用した REST API ゲートウェイの構築、Cloud Run でのサービスの構築とデプロイといったスキルを実証できます。

詳細

Twelve years ago Lily started the Pet Theory chain of veterinary clinics, and has been expanding rapidly. Now, Pet Theory is experiencing some growing pains: their appointment scheduling system is not able to handle the increased load, customers aren't receiving lab results reliably through email and text, and veteranerians are spending more time with insurance companies than with their patients. Lily wants to build a cloud-based system that scales better than the legacy solution and doesn't require lots of ongoing maintenance. The team has decided to go with serverless technology. For the labs in the Google Cloud Run Serverless Quest, you will read through a fictitious business scenario in each lab and assist the characters in implementing a serverless solution. Looking for a hands on challenge lab to demonstrate your skills and validate your knowledge? On completing this quest, enroll in and finish the additional challenge lab at the end of this quest to receive an exclusive Google…

詳細

「Google Kubernetes Engine の費用の最適化」の中級スキルバッジを獲得すると、 マルチテナント クラスタの作成と管理、各 Namespace のリソース使用状況のモニタリング、 効率向上のためのクラスタと Pod の自動スケーリングの構成、最適なリソース配分のためのロード バランシングの設定、 アプリケーションの健全性と費用対効果を確保するための liveness プローブと readiness プローブの実装といったスキルを実証できます。

詳細

クラウド アーキテクチャ: 設計、実装、管理 コースを修了して、スキルバッジを獲得しましょう。 Apache ウェブサーバーを使用した一般公開ウェブサイトのデプロイ、 起動スクリプトを使用した Compute Engine VM の構成、 Windows の踏み台インスタンスとファイアウォール ルールを使用したセキュアな RDP の構成、ビルドした Docker イメージの Kubernetes クラスタへのデプロイと更新、 CloudSQL インスタンスの作成と MySQL データベースのインポートといったスキルを実証できます。 このスキルバッジは、 Google Cloud Certified Professional Cloud Architect 認定資格試験に出題されるトピックを理解するのに 役立つリソースです。

詳細

「Apigee X のデプロイと管理」クエストを修了するとスキルバッジを獲得できます。 X このクエストでは、Apigee X アーキテクチャ、Google Cloud プロジェクト内の Apigee X 組織のプロビジョニング方法、 Apigee API と UI を使用した Apigee X の管理、 Cloud Armor と Apigee 脅威保護ポリシーを使用して API を保護する方法を学びます。

詳細

「AWS プロフェッショナルのための Google Cloud インフラストラクチャの構築」コースを修了してスキルバッジを獲得しましょう。このコースでは、IAM 権限の構成、 Kubernetes を使用したワークロードのオーケストレーション、Compute Engine を使用したウェブ アプリケーションのホスト、 ロード バランシングの構成の各方法について学びます。

詳細

「Azure プロフェッショナルのための Google Cloud インフラストラクチャの構築 」コースを修了してスキルバッジを獲得しましょう。このコースでは、IAM 権限の構成、 Kubernetes を使用したワークロードのオーケストレーション、Compute Engine を使用したウェブ アプリケーションのホスト、 ロード バランシングの構成の各方法について学びます。 スキルバッジは、 Google Cloud のプロダクトとサービスの習熟度を示す Google Cloud 発行の限定デジタルバッジで、 インタラクティブなハンズオン環境での知識の応用力を 証明するものです。このスキルバッジ コースと最終評価チャレンジラボを完了し、 デジタルバッジを獲得してネットワークで共有しましょう。

詳細

「Google Cloud への CI / CD パイプラインの実装」コースを修了して中級のスキルバッジを獲得しましょう。 Artifact Registry、Cloud Build、Cloud Deploy の使用方法を学習できます。Cloud コンソール、Google Cloud CLI、Cloud Run、GKE を使用します 。このコースでは、継続的インテグレーション(CI) パイプラインの構築、アーティファクトの保存と保護、脆弱性のスキャン、承認されたリリースの有効性の証明 の方法を説明します。さらに、アプリケーションを GKE と Cloud Run の両方にデプロイするという実践的な経験を積むことができます。

詳細

入門スキルバッジ コース「Google Cloud Observability を使用したモニタリングとロギング」を修了すると、 Compute Engine における仮想マシンのモニタリング、 複数プロジェクトの監視を目的とした Cloud Monitoring の利用、モニタリング機能とロギング機能の Cloud Functions への拡張、 アプリケーションに対するカスタム指標の作成と送信、カスタム指標に基づく Cloud Monitoring アラートの構成に関するスキルを実証できます。

詳細

Google Cloud での DevOps ワークフローの実装 コースの中級スキルバッジを獲得できるアクティビティを修了すると、 Cloud Source Repositories を使用した Git リポジトリの作成、 Google Kubernetes Engine(GKE)上でのデプロイのリリース、管理、スケール、 コンテナ イメージのビルドと GKE へのデプロイを自動化する CI / CD パイプラインの設計といったスキルを実証できます。

詳細

「Google Cloud における Terraform を使用したインフラストラクチャの構築」の中級スキルバッジを獲得すると、 Terraform を使用した Infrastructure as Code(IaC)の原則、Terraform 構成を使用した Google Cloud リソースのプロビジョニングと管理、 状態の効果的な管理(ローカルおよびリモート)、組織内での再利用性を念頭に置いた Terraform コードのモジュール化といったスキルを実証できます。

詳細

Google Cloud での Kubernetes アプリケーションのデプロイ コースの中級スキルバッジを獲得できるアクティビティを修了すると、 Docker コンテナ イメージの構成とビルド、Google Kubernetes Engine(GKE)クラスタの作成と管理、kubectl を活用した効率的な クラスタ管理、堅牢な継続的デリバリー(CD)による Kubernetes アプリケーションのデプロイ手法といったスキルを実証できます。

詳細

Google Cloud ネットワークの設定コースを修了してスキルバッジを獲得しましょう。 このコースでは、Google Cloud Platform で基本的なネットワーキング タスクを実行する方法を学習します。具体的には、カスタム ネットワークの作成、サブネット ファイアウォール ルールの追加、VM の作成、そして VM 同士が通信する際のレイテンシのテストについて学びます。

詳細

「Google Cloud ネットワークの構築」コースを修了してスキルバッジを獲得しましょう。このコースでは、 アプリケーションをデプロイしてモニタリングするための複数の方法について学びます。具体的には、IAM ロールの確認とプロジェクト アクセスの追加 / 削除、 VPC ネットワークの作成、Compute Engine VM のデプロイとモニタリング、 SQL クエリの記述、Compute Engine での VM のデプロイとモニタリング、Kubernetes を使用した複数のデプロイ アプローチによるアプリケーションのデプロイなどです。

詳細

「Google Cloud におけるアプリ開発環境の設定」コースを完了すると、スキルバッジを獲得できます。このコースでは、 Cloud Storage、Identity and Access Management、Cloud Functions、Pub/Sub のテクノロジーの基本機能を使用して、ストレージ中心のクラウド インフラストラクチャを構築し接続する方法を学びます。

詳細

「Compute Engine での Cloud Load Balancing の実装」入門コースを修了してスキルバッジを獲得すると、次のスキルを実証できます: Compute Engine における仮想マシンの作成とデプロイ、 ネットワーク ロードバランサとアプリケーション ロードバランサの構成。

詳細