Andrii Bashtovyi
Date d'abonnement : 2023
Ligue d'Argent
137243 points
Date d'abonnement : 2023
Cette collection d'ateliers pratiques démontre la puissance de l'intégration des services et des outils de Google Cloud aux applications Workspace. Vous allez créer des connexions directes aux sources de données Google Cloud à l'aide de l'API BigQuery, d'Apps Script, de Sheets et de Slides pour collecter, analyser et présenter des données.
Ce cours s'adresse particulièrement aux personnes qui travaillent dans les services technologiques ou financiers, et qui sont responsables de la gestion des coûts associés à Google Cloud. Vous apprendrez à configurer un compte de facturation, à organiser les ressources et à gérer les autorisations d'accès à la facturation. Dans les ateliers pratiques, vous découvrirez comment consulter votre facture, suivre vos coûts Google Cloud à l'aide de rapports de facturation, analyser vos données de facturation avec BigQuery ou Google Sheets, et créer des tableaux de bord de facturation personnalisés avec Looker Studio. Les liens mentionnés dans les vidéos sont accessibles dans le document Ressources supplémentaires.
In this introductory-level quest, you will learn the fundamentals of developing and deploying applications on the Google Cloud Platform. You will get hands-on experience with the Google App Engine framework by launching applications written in languages like Python, Ruby, and Java (just to name a few). You will see first-hand how straightforward and powerful GCP application frameworks are, and how easily they integrate with GCP database, data-loss prevention, and security services.
Cette collection d'ateliers pratiques démontre la puissance de l'intégration des services et des outils de Google Cloud aux applications Workspace. Vous pouvez par exemple créer un bot d'enquête avec Node.js, utiliser l'API Natural Language pour reconnaître les sentiments dans un document Google Docs ou encore créer un chatbot avec Apps Script.
Ce cours a été conçu pour présenter en détail les services principaux de Google Workspace. Les participants y apprendront à activer, désactiver et configurer les paramètres de ces services, dont Gmail, Agenda, Drive, Meet, Chat et Docs. Ensuite, ils découvriront comment déployer et gérer Gemini dans l'intérêt de leurs utilisateurs. Enfin, les participants examineront des cas d'utilisation d'AppSheet et d'Apps Script pour apprendre à automatiser des tâches et étendre les fonctionnalités des applications Google Workspace.
Dans ce cours, vous allez apprendre à développer une application à l'aide de Flutter, le kit d'interface utilisateur portable de Google, et à y intégrer Gemini, la famille de modèles d'IA générative de Google. Vous allez également utiliser Vertex AI Agent Builder, la plate-forme de Google pour développer et gérer des agents d'IA et des applications.
Conçu pour les développeurs de tous niveaux, ce cours vous présente les principales caractéristiques et fonctionnalités de Gemini Code Assist, un assistant de développement d'applications optimisé par l'IA pour Google Cloud. Des suggestions de code intelligentes à la saisie semi-automatique, en passant par la détection d'erreurs en temps réel et l'aide à la refactorisation, vous découvrirez comment Gemini Code Assist peut améliorer considérablement votre productivité et la qualité de votre code. Il vous fera également gagner un temps précieux pour que vous puissiez vous concentrer sur des tâches plus productives et agréables.
Ce cours présente Gemini dans BigQuery, une suite de fonctionnalités basées sur l'IA conçue pour faciliter le workflow "des données à l'IA". Ces fonctionnalités incluent l'exploration et la préparation des données, la génération et le dépannage de code, ainsi que la découverte et la visualisation du workflow. Au moyen d'explications conceptuelles, d'un cas d'utilisation concret et d'ateliers pratiques, le cours explique aux professionnels des données comment booster leur productivité et accélérer le pipeline de développement.
Obtenez le badge de compétence intermédiaire La livraison sécurisée de logiciels pour démontrer votre capacité à intégrer de manière proactive la sécurité au cycle de vie du développement logiciel (SDLC) en appliquant les principes DevSecOps. Vous apprendrez à utiliser Google Kubernetes Engine (GKE) et Cloud Run pour déployer des images de conteneurs de façon sécurisée, à implémenter l'analyse des failles automatisée pour identifier les risques de manière proactive et à simplifier le développement d'applications avec Artifact Registry tout en mettant l'accent sur la sécurité. Vous apprendrez également à intégrer Cloud Build pour des processus de développement robustes et à implémenter des stratégies de contrôle des admissions pour un contrôle précis de votre environnement.
This course covers the baseline skills needed for the Google Security Operations Platform. The modules will cover specific actions and features that security engineers should become familiar with to start using the toolset.
Les organisations qui migrent des données et des applications vers le cloud font face à de nouveaux défis en termes de sécurité. Le cours "Confiance et sécurité avec Google Cloud" présente les principes de base de la sécurité dans le cloud, les avantages de l'approche multicouche de Google Cloud concernant la sécurité de l'infrastructure, et la manière dont Google gagne et conserve la confiance des clients vis-à-vis du cloud. Ce cours fait partie du parcours de formation Cloud Digital Leader. Il vise à aider les participants à évoluer dans leur poste et à bâtir l'avenir de leur entreprise.
Avec l'essor de l'utilisation de l'intelligence artificielle et du machine learning en entreprise, il est de plus en plus important de développer ces technologies de manière responsable. Pour beaucoup, le véritable défi réside dans la mise en pratique de l'IA responsable, qui s'avère bien plus complexe que dans la théorie. Si vous souhaitez découvrir comment opérationnaliser l'IA responsable dans votre organisation, ce cours est fait pour vous. Dans ce cours, vous allez apprendre comment Google Cloud procède actuellement, en s'appuyant sur des bonnes pratiques et les enseignements tirés, afin de vous fournir un framework pour élaborer votre propre approche d'IA responsable.
This course discusses how environments are managed in Apigee hybrid, and how runtime plane components are secured. You will also learn how to deploy and debug API proxies in Apigee hybrid, and about capacity planning and scaling.
De nombreuses entreprises traditionnelles utilisent d'anciens systèmes et d'anciennes applications qui ne peuvent plus satisfaire les attentes des clients d'aujourd'hui. Les chefs d'entreprise doivent régulièrement choisir entre deux options : entretenir leurs systèmes informatiques vieillissants ou investir dans de nouveaux produits et services. Le cours "Moderniser l'infrastructure et les applications avec Google Cloud" aborde ces problématiques et propose des solutions pour les résoudre à l'aide de la technologie cloud. Ce cours fait partie du parcours de formation Cloud Digital Leader. Il vise à aider les participants à évoluer dans leur poste et à bâtir l'avenir de leur entreprise.
Les organisations de toutes tailles exploitent le potentiel et la flexibilité du cloud afin de transformer leurs opérations. Toutefois, la gestion et le scaling des ressources cloud peuvent s'avérer complexes. "Scaling avec la suite Google Cloud Operations" présente les concepts fondamentaux des opérations modernes, de la fiabilité et de la résilience dans le cloud, ainsi que la manière dont Google Cloud peut vous aider à atteindre ces objectifs. Ce cours fait partie du parcours de formation Cloud Digital Leader. Il vise à aider les participants à évoluer dans leur poste et à bâtir l'avenir de leur entreprise.
Bienvenue dans le cours "Hybrid Cloud Infrastructure Foundations with Anthos". Il s'agit du premier cours du parcours "Architecting Hybrid Cloud Infrastructure with Anthos". Anthos vous permet de créer et de gérer des applications modernes, et de les exécuter où vous le souhaitez. Anthos offre une expérience cohérente dans les environnements sur site et dans le cloud. Dans ce cours, nous allons vous présenter les modules qui vous permettront d'acquérir des compétences que vous utiliserez en tant qu'architecte ou administrateur responsable de l'exécution d'environnements Anthos. Les modules de ce cours incluent des vidéos, des ateliers pratiques et des liens vers des ressources de documentation utiles.
Service level indicators (SLIs) and service level objectives (SLOs) are fundamental tools for measuring and managing reliability. In this course, students learn approaches for devising appropriate SLIs and SLOs and managing reliability through the use of an error budget.
Ce cours présente les solutions d'IA et de machine learning (ML) de Google Cloud permettant de développer des projets d'IA prédictive et générative. Il décrit les technologies, produits et outils disponibles tout au long du cycle de vie des données à l'IA, en englobant les éléments de base, le développement et les solutions d'IA. Son but est d'aider les data scientists, les développeurs d'IA et les ingénieurs en ML à améliorer leurs compétences et connaissances par le biais d'expériences d'apprentissage captivantes et d'exercices pratiques.
Dans bien des services informatiques, il existe des divergences entre les avantages souhaités par les développeurs, à savoir l'agilité, et ceux des opérateurs, qui recherchent la stabilité. L'ingénierie de la fiabilité des sites (SRE) permet à Google d'aligner les mesures incitatives entre le développement et les opérations, et de proposer une assistance à la production critique. Adopter des pratiques techniques et culturelles de l'ingénierie SRE permet d'améliorer la collaboration entre les équipes métiers et informatiques. Ce cours présente les pratiques clés de l'ingénierie SRE façon Google, ainsi que le rôle déterminant que jouent les responsables IT et les chefs d'entreprise dans la réussite de son adoption au sein de leur organisation.
Machine Learning is one of the most innovative fields in technology, and the Google Cloud Platform has been instrumental in furthering its development. With a host of APIs, Google Cloud has a tool for just about any machine learning job. In this advanced-level course, you will get hands-on practice with machine learning at scale and how to employ the advanced ML infrastructure available on Google Cloud.
Ce cours de micro-apprentissage, qui s'adresse aux débutants, explique ce qu'est l'IA responsable, souligne son importance et décrit comment Google l'implémente dans ses produits. Il présente également les sept principes de l'IA de Google.
Dans ce cours, vous allez apprendre à créer un modèle de sous-titrage d'images à l'aide du deep learning. Vous découvrirez les différents composants de ce type de modèle, comme l'encodeur et le décodeur, et comment l'entraîner et l'évaluer. À la fin du cours, vous serez en mesure de créer vos propres modèles de sous-titrage d'images et de les utiliser pour générer des sous-titres pour des images.
Ce cours de micro-apprentissage, qui s'adresse aux débutants, explique ce que sont les grands modèles de langage (LLM). Il inclut des cas d'utilisation et décrit comment améliorer les performances des LLM grâce au réglage des requêtes. Il présente aussi les outils Google qui vous aideront à développer votre propre application d'IA générative.
Ce cours présente l'architecture Transformer et le modèle BERT (Bidirectional Encoder Representations from Transformers). Vous découvrirez quels sont les principaux composants de l'architecture Transformer, tels que le mécanisme d'auto-attention, et comment ils sont utilisés pour créer un modèle BERT. Vous verrez également les différentes tâches pour lesquelles le modèle BERT peut être utilisé, comme la classification de texte, les questions-réponses et l'inférence en langage naturel. Ce cours dure environ 45 minutes.
"Planning for a Google Workspace Deployment" est le dernier cours de la série "Google Workspace Administration". Dans ce cours, vous découvrirez la méthodologie et les bonnes pratiques de déploiement de Google. Vous suivrez Katelyn et Marcus lors de la planification du déploiement de Google Workspace chez Cymbal. Ils se concentreront sur les principaux aspects techniques du projet, à savoir le provisionnement, la distribution des e-mails, la migration des données et la coexistence, et identifieront la meilleure stratégie de déploiement pour chaque aspect. Vous verrez également toute l'importance de la gestion du changement lors du déploiement de Google Workspace, afin de s'assurer que les utilisateurs bénéficient d'une transition fluide vers Google Workspace et profitent des avantages de ce changement grâce à des communications, une assistance et des formations. Ce cours aborde des sujets théoriques et ne contient aucun exercice pratique. Si ce n'est pas déjà fait, veuillez annuler…
Moving to the cloud creates numerous opportunities to start working in a new way and it empowers the workforce to better collaborate and innovate. But it’s also a big change. Sometimes the success of the change hinges not on the change itself, but on how it’s managed. This course will help people managers to understand some of the key challenges associated with cloud adoption, and provide them with a verified in-the-field framework that will assist them in supporting their teams on the change journey. By addressing the human factor of moving to the cloud, organizations increase their chances of realizing business objectives and investing in their future talent.
L'intelligence artificielle (IA) et le machine learning (ML) représentent une évolution importante de l'informatique et transforment rapidement un grand nombre de secteurs. Le cours "Innover avec l'intelligence artificielle de Google Cloud" explore comment les organisations peuvent utiliser l'IA et le ML pour repenser leurs processus métier. Ce cours fait partie du parcours de formation Cloud Digital Leader. Il vise à aider les participants à évoluer dans leur poste et à bâtir l'avenir de leur entreprise.
Ce cours de micro-apprentissage, qui s'adresse aux débutants, explique ce qu'est l'IA générative, décrit à quoi elle sert et souligne ce qui la distingue des méthodes de machine learning traditionnel. Il présente aussi les outils Google qui vous aideront à développer votre propre application d'IA générative.
Ce cours offre un aperçu de l'architecture encodeur/décodeur, une architecture de machine learning performante souvent utilisée pour les tâches "seq2seq", telles que la traduction automatique, la synthèse de texte et les questions-réponses. Vous découvrirez quels sont les principaux composants de l'architecture encodeur/décodeur, et comment entraîner et exécuter ces modèles. Dans le tutoriel d'atelier correspondant, vous utiliserez TensorFlow pour coder une implémentation simple de cette architecture afin de générer un poème en partant de zéro.
Ce cours présente le mécanisme d'attention, une technique efficace permettant aux réseaux de neurones de se concentrer sur des parties spécifiques d'une séquence d'entrée. Vous découvrirez comment fonctionne l'attention et comment l'utiliser pour améliorer les performances de diverses tâches de machine learning, dont la traduction automatique, la synthèse de texte et les réponses aux questions.
Dans ce bref cours consacré à l'intégration d'applications avec les modèles Gemini 1.0 Pro sur Google Cloud, vous découvrirez l'API Gemini et ses modèles d'IA générative. Vous apprendrez également à accéder aux modèles Gemini 1.0 Pro et Gemini 1.0 Pro Vision à partir du code. Enfin, vous testerez les capacités des modèles avec des requêtes contenant du texte, des images et des vidéos à partir d'une application.
Dans ce cours, vous découvrirez comment Gemini, un outil de collaboration Google Cloud optimisé par l'IA générative, aide à analyser les données client et à prédire les ventes de produits. Vous apprendrez également à identifier, classer et développer de nouveaux clients à l'aide des données client dans BigQuery. À l'aide d'ateliers pratiques, vous verrez en quoi Gemini améliore les workflows d'analyse de données et de machine learning. Duet AI a été rebaptisé Gemini, notre modèle nouvelle génération.
Dans ce cours, vous découvrirez comment Gemini, un outil de collaboration Google Cloud optimisé par l'IA générative, vous aide à utiliser les produits et services Google pour développer, tester et gérer des applications. Avec l'assistance de Gemini, vous apprendrez à développer une application Web, à corriger les erreurs de l'application, à créer des tests et à interroger des données. À l'aide d'un atelier pratique, vous verrez en quoi Gemini améliore le cycle de vie du développement logiciel (SDLC, software development lifecycle). Duet AI a été rebaptisé Gemini, notre modèle nouvelle génération.
Gemini pour Google Workspace est un module complémentaire qui fournit aux clients des fonctionnalités d'IA générative dans Google Workspace. Dans ce petit cours, vous allez découvrir les principales fonctionnalités de Gemini et comment elles peuvent servir à améliorer la productivité et l'efficacité dans Gmail.
Dans ce cours, vous découvrirez comment Gemini, un outil de collaboration Google Cloud optimisé par l'IA générative, aide les ingénieurs réseau à créer, mettre à jour et gérer des réseaux VPC. Vous apprendrez comment demander à Gemini de vous fournir des conseils spécifiques pour vos tâches de gestion de réseaux, que vous ne pourriez pas obtenir avec un moteur de recherche. À l'aide d'un atelier pratique, vous verrez en quoi Gemini permet d'utiliser plus facilement les réseaux VPC Google Cloud. Duet AI a été rebaptisé Gemini, notre modèle nouvelle génération.
Dans ce cours, vous découvrirez comment Gemini, un collaborateur de Google Cloud optimisé par l'IA générative, aide les ingénieurs à gérer l'infrastructure. Vous apprendrez à demander à Gemini de trouver et comprendre les journaux d'application, de créer un cluster GKE et d'étudier comment créer un environnement de compilation. À l'aide d'un atelier pratique, vous verrez en quoi Gemini améliore le workflow DevOps. Duet AI a été renommé Gemini, notre modèle nouvelle génération.
Dans ce cours, vous découvrirez comment Gemini, un collaborateur de Google Cloud optimisé par l'IA générative, aide les développeurs à créer des applications. Vous apprendrez à demander à Gemini d'expliquer du code, de recommander des services Google Cloud et de générer du code pour vos applications. À l'aide d'un atelier pratique, vous verrez en quoi Gemini améliore le workflow de développement d'applications. Duet AI a été renommé Gemini, notre modèle nouvelle génération.
Dans ce cours, vous découvrirez comment Gemini, un collaborateur de Google Cloud optimisé par l'IA générative, aide les administrateurs à provisionner l'infrastructure. Vous apprendrez à demander à Gemini d'expliquer l'infrastructure, de déployer les clusters GKE et de mettre à jour l'infrastructure existante. À l'aide d'un atelier pratique, vous verrez en quoi Gemini améliore le workflow de déploiement GKE. Duet AI a été renommé "Gemini", notre modèle nouvelle génération.
Gemini pour Google Workspace est un module complémentaire qui permet aux utilisateurs d'accéder à des fonctionnalités d'IA générative. Ce cours explore les fonctionnalités de Gemini dans Google Meet. Au moyen de vidéos pédagogiques, d'activités pratiques et d'exemples concrets, vous allez découvrir les fonctionnalités de Gemini dans Google Meet. Vous allez apprendre à utiliser Gemini pour générer des images d'arrière-plan, améliorer la qualité de la vidéo et traduire des sous-titres. À la fin de ce cours, vous disposerez des connaissances et des compétences nécessaires pour utiliser Gemini en toute confiance dans Google Meet afin d'optimiser l'efficacité de vos visioconférences.
Dans ce cours, vous découvrirez comment Gemini, un collaborateur de Google Cloud optimisé par l'IA générative, vous aide à sécuriser votre environnement et vos ressources cloud. Vous apprendrez à déployer des exemples de charges de travail dans un environnement Google Cloud, puis à identifier et à corriger les erreurs de configuration de la sécurité avec Gemini. À l'aide d'un atelier pratique, vous verrez en quoi Gemini améliore votre stratégie de sécurité dans le cloud. Duet AI a été renommé Gemini, notre modèle nouvelle génération.
Gemini pour Google Workspace est un module complémentaire qui fournit aux clients des fonctionnalités d'IA générative dans Google Workspace. Dans ce parcours de formation, vous allez découvrir les principales fonctionnalités de Gemini et comment elles peuvent servir à améliorer la productivité et l'efficacité dans Google Workspace.
Gemini pour Google Workspace est un module complémentaire qui fournit aux clients des fonctionnalités d'IA générative dans Google Workspace. Dans ce petit cours, vous allez découvrir les principales fonctionnalités de Gemini et comment elles peuvent servir à améliorer la productivité et l'efficacité dans Google Sheets.
Gemini pour Google Workspace est un module complémentaire qui permet aux utilisateurs d'accéder à des fonctionnalités d'IA générative. Ce cours explore les fonctionnalités de Gemini dans Google Docs au moyen de vidéos pédagogiques, d'activités pratiques et d'exemples concrets. Vous allez apprendre à utiliser Gemini pour générer des contenus écrits basés sur des requêtes. Vous allez également découvrir comment l'utiliser pour modifier du texte que vous avez déjà rédigé, vous aidant ainsi à améliorer votre productivité globale. À la fin de ce cours, vous disposerez des connaissances et des compétences nécessaires pour utiliser Gemini en toute confiance dans Google Docs afin d'améliorer vos écrits.
Gemini pour Google Workspace est un module complémentaire qui fournit aux clients des fonctionnalités d'IA générative dans Google Workspace. Dans ce petit cours, vous allez découvrir les principales fonctionnalités de Gemini et comment elles peuvent servir à améliorer la productivité et l'efficacité dans Google Slides.
Améliorez l'expérience de navigation sur votre site Web en utilisant l'IA générative pour offrir une meilleure expérience de recherche à vos utilisateurs. Dans ce cours, vous allez apprendre à utiliser Vertex AI Search pour proposer aux utilisateurs de votre site Web une expérience de recherche générative leur permettant de découvrir le contenu proposé par votre site Web. En tant qu'éditeur de sites Web, vous allez également apprendre à utiliser l'IA générative pour traduire et améliorer rapidement et efficacement vos contenus à l'aide de suggestions.
Ce cours présente les modèles de diffusion, une famille de modèles de machine learning qui s'est récemment révélée prometteuse dans le domaine de la génération d'images. Les modèles de diffusion trouvent leur origine dans la physique, et plus précisément dans la thermodynamique. Au cours des dernières années, ils ont gagné en popularité dans la recherche et l'industrie. Ils sont à la base de nombreux modèles et outils Google Cloud avancés de génération d'images. Ce cours vous présente les bases théoriques des modèles de diffusion, et vous explique comment les entraîner et les déployer sur Vertex AI.
This course is an introduction to building forecasting solutions with Google Cloud. You start with sequence models and time series foundations. You then walk through an end-to-end workflow: from data preparation to model development and deployment with Vertex AI. Finally, you learn the lessons and tips from a retail use case and apply the knowledge by building your own forecasting models.
Avec ce cours, explorez les technologies de recherche, les outils et les applications optimisés par l'IA. Découvrez la recherche sémantique, qui utilise les embeddings vectoriels (ou "plongements vectoriels"), la recherche hybride, qui combine les approches sémantique et par mots-clés, et la génération augmentée par récupération (RAG), qui réduit les hallucinations générées par l'IA en agissant comme un agent ancré. Enfin, acquérez une expérience pratique de Vertex AI Vector Search afin de créer votre moteur de recherche intelligent.
Dans ce cours, vous allez acquérir les connaissances et les outils nécessaires pour identifier les problématiques uniques auxquelles les équipes MLOps sont confrontées lors du déploiement et de la gestion de modèles d'IA générative. Vous verrez également en quoi Vertex AI permet aux équipes d'IA de simplifier les processus MLOps et de faire aboutir leurs projets d'IA générative.
Ce cours présente les outils et les bonnes pratiques MLOps pour déployer, évaluer, surveiller et exploiter des systèmes de ML en production sur Google Cloud. Le MLOps est une discipline axée sur le déploiement, le test, la surveillance et l'automatisation des systèmes de ML en production. Les participants s'entraîneront à utiliser l'ingestion en flux continu de Vertex AI Feature Store au niveau du SDK.
Ce cours est une introduction aux notebooks Vertex AI, des environnements basés sur des notebooks Jupyter qui proposent une plate-forme unifiée pour l'ensemble du workflow de machine learning, de la préparation des données jusqu'au déploiement et à la surveillance des modèles. Le cours aborde les sujets suivants : (1) Les différents types de notebooks Vertex AI et leurs fonctionnalités, et (2) comment en créer et les gérer.
Ce cours présente Vertex AI Studio, un outil permettant d'interagir avec des modèles d'IA générative, de prototyper des idées commerciales et de les envoyer en production. Au moyen d'un cas d'utilisation immersif, de leçons captivantes et d'un atelier pratique, vous allez découvrir le cycle de vie de la requête au produit. Vous apprendrez également à utiliser Vertex AI Studio pour les applications multimodales Gemini, la conception de requêtes, le prompt engineering (ingénierie des requêtes) et le réglage de modèles. L'objectif est de vous permettre d'exploiter tout le potentiel de l'IA générative dans vos projets avec Vertex AI Studio.
Le cours "Explorateur de l'IA générative – Vertex AI" est un ensemble d'ateliers consacrés à l'utilisation de l'IA générative sur Google Cloud. Vous apprendrez à utiliser les modèles de la famille d'API PaLM Vertex AI comme text-bison, chat-bison, et textembedding-gecko. Vous découvrirez également comment rédiger des prompts, quelles bonnes pratiques appliquer, et comment utiliser l'IA générative pour l'idéation, la classification et l'extraction de texte, la création de synthèses, et plus encore. Enfin, vous apprendrez à régler un modèle de fondation à l'aide de l'entraînement personnalisé Vertex AI et à le déployer sur un point de terminaison Vertex AI.
Obtenez le badge de compétence intermédiaire Explorer l'IA générative avec l'API Gemini dans Vertex AI pour démontrer vos compétences dans les domaines suivants : la génération de texte, l'analyse d'images et de vidéos pour améliorer la création de contenu, et l'application de techniques d'appel de fonction dans l'API Gemini. Découvrez comment exploiter des techniques Gemini avancées et étendre les capacités de vos projets optimisés par l'IA, et explorez le fonctionnement de la génération de contenu multimodal.
Terminez le cours intermédiaire Développer des applications d'IA générative avec Gemini et Streamlit pour recevoir un badge démontrant vos compétences dans les domaines suivants : la génération de texte, l'application d'appels de fonction avec le SDK Python et l'API Gemini, et le déploiement d'une application Streamlit avec Cloud Run. Vous découvrirez différentes manières de demander à Gemini de générer du texte, d'utiliser Cloud Shell pour effectuer des tests et des itérations sur une application Streamlit, puis de l'empaqueter en tant que conteneur Docker déployé dans Cloud Run.
Earn a skill badge by completing the Build Custom Processors with Document AI course. You learn how to extract data and classify documents by creating custom ML models specific to your business needs. This course teaches the foundation skills of building your own processors, working with optical character recognition, form parsing, processor creation, and uptraining the DocumentAI model.
Complete the introductory Build LangChain Applications using Vertex AI skill badge to learn how to build Generative AI applications using LangChain and the Retrieval Augmented Generation (RAG) technique for text-based content, powered by Vertex AI's advanced Generative AI capabilities. Discover how to integrate powerful large language models (LLMs) with search and retrieval workflows, boosting the accuracy and relevance of your generated content. Earn a Google Cloud skill badge and showcase your expertise by completing the course and its final assessment challenge lab.
Obtenez un badge de compétence en effectuant la quête Analyser les sentiments avec l'API Natural Language, qui vous explique comment l'API extrait le sentiment à partir d'un texte.
Validez le cours d'introduction Intégrer les données BigQuery et Google Workspace avec Apps Script pour recevoir un badge de compétence attestant que vous savez connecter les produits Workspace à BigQuery via AppSheet.
Want to scale your data analysis efforts without managing database hardware? Learn the best practices for querying and getting insights from your data warehouse with this interactive series of BigQuery labs. BigQuery is Google's fully managed, NoOps, low cost analytics database. With BigQuery you can query terabytes and terabytes of data without having any infrastructure to manage or needing a database administrator. BigQuery uses SQL and can take advantage of the pay-as-you-go model. BigQuery allows you to focus on analyzing data to find meaningful insights.
Terminez le cours d'introduction Créer un maillage de données avec Dataplex pour recevoir un badge démontrant vos compétences dans les domaines suivants : la création d'un maillage de données avec Dataplex pour faciliter la sécurité, la gouvernance et la découverte des données sur Google Cloud. Cela comprend l'ajout de tags à des éléments, l'attribution de rôles IAM et l'évaluation de la qualité des données dans Dataplex.
Obtenez le badge de compétence de niveau débutant "Créer des applications d'IA concrètes avec Gemini et Imagen" pour démontrer vos compétences dans les domaines suivants : reconnaissance d'image, traitement du langage naturel, génération d'images à l'aide des puissants modèles Gemini et Imagen de Google, et déploiement d'applications sur la plate-forme Vertex AI.
Terminez le cours d'introduction Conception de requêtes dans Vertex AI pour recevoir un badge démontrant vos compétences dans les domaines suivants : le prompt engineering (ingénierie des requêtes), l'analyse d'images et les techniques d'IA générative multimodale dans Vertex AI. Découvrez comment élaborer des requêtes efficaces, guider les résultats de l'IA générative et appliquer des modèles Gemini à des scénarios marketing concrets.
Suivez le cours Utiliser l'API Google Cloud Speech et obtenez un badge de compétence. Dans ce cours, vous apprendrez à créer une requête API Speech-to-Text, à transcrire un énoncé audio en texte et à transcrire un énoncé.
Terminez le cours d'introduction Utiliser des API pour travailler avec Cloud Storage badge de compétence dans les domaines suivants : Utiliser des API pour travailler avec des ressources Cloud Storage, y compris l'API Cloud Storage.
Obtenez un badge de compétence en suivant le cours Google Cloud Compute : principes de base, où vous apprendrez à utiliser des machines virtuelles (VM), des disques persistants et des serveurs Web à l'aide de Compute Engine.
Terminez le cours d'introduction Premiers pas avec Sensitive Data Protection pour recevoir un badge de compétence dans le domaine suivant : utilisation des services Sensitive Data Protection (y compris l'API Cloud Data Loss Prevention) pour inspecter, masquer et supprimer les éléments d'identification des données sensibles dans Google Cloud.
Obtenez un badge de compétence en suivant le cours Analyser des images avec l'API Cloud Vision. Vous y découvrirez comment exploiter l'API Cloud Vision pour diverses tâches, y compris l'extraction de texte à partir d'images.
Terminez le cours d'introduction Sécuriser des données BigLake pour recevoir un badge démontrant vos compétences avec IAM, BigQuery, BigLake et Data Catalog dans Dataplex pour créer et sécuriser des tables BigLake.
Terminez le cours Enrichir les métadonnées et la découverte des données BigLake pour recevoir un badge démontrant vos compétences avec BigQuery, BigLake et le Dataplex Universal Catalog. Vous allez apprendre à créer des tables BigLake et à enrichir la gestion des métadonnées ainsi que la découverte des données de table.
Terminez le cours d'introduction Créer un lac de données sécurisé sur Cloud Storage pour recevoir un badge de compétence dans les domaines suivants : sécuriser et configurer un bucket Cloud Storage, utiliser Gemini pour générer du texte, gérer le contrôle des accès IAM et créer un lac Dataplex pour la gouvernance des données.
Obtenez un badge de compétence en validant le cours Analyser la parole et le langage avec les API Google, dans lequel vous apprendrez à utiliser les API Natural Language et Speech en conditions réelles.
Obtenez un badge de compétence en suivant le cours Premiers pas avec Eventarc, dans lequel vous utilisez Eventarc pour créer des déclencheurs d'événements pour différentes ressources, y compris des sujets Pub/Sub et des buckets Cloud Storage.
Obtenez un badge de compétence en suivant le cours Analyse de flux dans BigQuery, où vous utiliserez Pub/Sub, Dataflow et BigQuery ensemble pour diffuser des données afin de les analyser.
Obtenez un badge de compétence en suivant le cours Premiers pas avec API Gateway, dans lequel vous apprendrez à utiliser API Gateway pour déployer, sécuriser et gérer des API avec une passerelle entièrement gérée.
Obtenez un badge de compétence en suivant le cours Développer des applications avec AppSheet, dans lequel vous apprendrez à créer, configurer et publier des applications à l'aide d'AppSheet.
Earn a skill badge by completing the Detect Manufacturing Defects using Visual Inspection AI course, where you learn how to use Visual Inspection AI to deploy a solution artifact and test that it can successfully identify defects in a manufacturing process.
Terminez le cours intermédiaire Utiliser des fonctions, des formules et des graphiques dans Google Sheets pour recevoir un badge pour démontrer vos compétences dans les domaines suivants : analyse de données à l'aide de fonctions, visualisation de données à l'aide de graphiques, ainsi que recherche, validation, mise en forme et affichage des données.
Terminez le cours Analyser les données BigQuery dans Google Sheets à l'aide des feuilles connectées pour recevoir un badge démontrant que vous savez utiliser les feuilles connectées pour accéder à des milliards de lignes de données BigQuery, les analyser, les visualiser et les partager à partir de votre feuille de calcul Google Sheets.
Validez le cours intermédiaire Effectuer une analyse prédictive des données dans BigQuery pour recevoir un badge attestant de vos compétences dans les domaines suivants : créer des ensembles de données dans BigQuery en important des fichiers CSV et JSON ; utiliser des concepts d'analyse SQL sophistiqués dans BigQuery, y compris utiliser BigQuery ML pour entraîner un modèle de prédiction de buts à partir de données de rencontres de football et évaluer le caractère exceptionnel des buts marqués lors de la Coupe du monde.
Terminez le cours intermédiaire Créer un entrepôt de données avec BigQuery pour recevoir un badge démontrant vos compétences dans les domaines suivants : la jointure de données pour créer des tables, la résolution des problèmes liés aux jointures, l'ajout de données avec des unions, la création de tables partitionnées par date, et l'utilisation d'objets JSON, ARRAY et STRUCT dans BigQuery.
Terminez le cours intermédiaire Atténuer les menaces et les failles avec Security Command Center pour recevoir un badge démontrant vos compétences dans les domaines suivants : prévenir et gérer les menaces environnementales, identifier et atténuer les failles des applications, et répondre aux anomalies de sécurité.
Obtenez un badge de compétence en suivant le cours Partager des données avec Google Data Cloud. Vous pourrez ainsi acquérir une expérience pratique concernant les partenaires de partage de données Google Cloud, qui disposent d'ensembles de données propriétaires que les clients peuvent utiliser pour effectuer des analyses de données. Les clients s'abonnent à ces données et les interrogent dans leur propre plate-forme. Ils les enrichissent ensuite avec leurs propres ensembles de données et utilisent leurs outils de visualisation pour les tableaux de bord destinés à leur clientèle.
Obtenez un badge de compétence en suivant le cours Créer un lac de flux de données sur Cloud Storage, dans lequel vous utiliserez Pub/Sub, Dataflow et Cloud Storage pour créer un lac de flux de données sur Google Cloud.
Obtenez un badge de compétence en suivant le cours Premiers pas avec Cloud Storage, où vous apprendrez à créer un bucket Cloud Storage, et à utiliser la ligne de commande Cloud Storage et le verrou de bucket pour protéger les objets.
Obtenez le badge de compétence de niveau Débutant en suivant le cours Configurer des comptes de service et des rôles IAM pour Google Cloud. Vous y découvrirez les comptes de service, les rôles personnalisés et comment définir des autorisations à l'aide de gcloud.
Terminez le cours d'introduction La surveillance dans Google Cloud pour recevoir un badge démontrant vos compétences dans les domaines suivants : utiliser les outils Cloud Monitoring pour surveiller les ressources sur Google Cloud.
Terminez le cours d'introduction Surveiller et gérer les ressources Google Cloud pour recevoir un badge démontrant vos compétences dans les domaines suivants : accorder et révoquer des autorisations IAM ; installer des agents Monitoring et Logging ; créer, déployer et tester une fonction Cloud Run basée sur des événements.
Terminez le cours intermédiaire Gérer des modèles de données dans Looker pour recevoir un badge démontrant vos compétences dans les domaines suivants : maintenir l'état de santé des projets LookML, utiliser l'exécuteur SQL pour la validation des données, appliquer les bonnes pratiques LookML, optimiser les requêtes et les rapports sur les performances, et mettre en œuvre des tables dérivées persistantes et des règles de mise en cache.
Terminez le cours d'introduction Créer des objets LookML dans Looker pour recevoir un badge démontrant vos compétences dans les domaines suivants : créer des dimensions, des mesures, des vues et des tables dérivées ; définir des types de filtres et de mesures en fonction des exigences ; mettre à jour les dimensions et les mesures ; créer et affiner des explorations ; joindre des vues à des explorations existantes et choisir les objets LookML à créer en fonction des exigences métier.
Obtenez un badge de compétence en suivant le cours Premiers pas avec Looker, dans lequel vous apprendrez à analyser, visualiser et organiser des données à l'aide de Looker Studio et Looker.
Terminez le cours d'introduction Préparer les données à utiliser pour les tableaux de bord et rapports Looker pour recevoir un badge démontrant vos compétences dans les domaines suivants : le filtrage, le tri et le croisement de données ; la fusion des résultats de différentes explorations Looker ; et l'utilisation de fonctions et d'opérateurs pour créer des tableaux de bord et des rapports Looker en vue de l'analyse et de la visualisation des données.
Obtenez un badge de compétence en suivant le cours Premiers pas avec Pub/Sub dans lequel vous apprendrez à utiliser Pub/Sub depuis la console Cloud. Vous découvrirez également comment les jobs Cloud Scheduler peuvent vous faire gagner du temps et quand Pub/Sub Lite permet de réaliser des économies sur l'ingestion d'événements.
Earn a skill badge by completing the Networking Fundamentals on Google Cloud quest, where you learn how to work with VPC networks and load balancers on Google Cloud. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete this Skill Badge, and the final assessment challenge lab, to receive a digital badge that you can share with your network.
Obtenez un badge de compétence de niveau Débutant en suivant le cours Premiers pas avec les outils Google Workspace. Vous y découvrirez la plate-forme collaborative de Google et apprendrez à utiliser Gmail, Agenda, Meet, Drive, Sheets et AppSheet.
Workspace est la plate-forme d'applications collaboratives de Google, fournie par Google Cloud. Dans ce cours d'introduction, vous allez découvrir les applications de base de Workspace du point de vue de l'utilisateur, grâce à des ateliers pratiques. Bien que Workspace propose beaucoup plus d'applications et de composants que ceux présentés ici, c'est un bon moyen pour vous familiariser avec les outils principaux : Gmail, Agenda, Sheets et quelques autres. Chaque atelier peut être effectué en 10 à 15 minutes, mais un temps supplémentaire vous est proposé pour mieux explorer les applications de manière autonome.
Obtenez le badge de compétence Débutant en suivant le cours API Cloud Speech : 3 applications, dans lequel vous apprendrez à utiliser les outils d'API liés à la parole pour effectuer de la synthèse et de la reconnaissance vocales.
Obtenez un badge de compétence en suivant le cours Développer avec Apps Script et AppSheet, où vous apprendrez à créer des chatbots et à utiliser l'éditeur de scripts dans n'importe quel document.
Terminez le cours intermédiaire Inspecter des documents enrichis avec Gemini multimodal et le RAG multimodal pour recevoir un badge démontrant vos compétences dans les domaines suivants : l'utilisation de requêtes multimodales pour extraire des informations de données textuelles et visuelles, la génération d'une description vidéo et la récupération d'informations qui ne sont pas incluses dans une vidéo en utilisant la multimodalité avec Gemini ; la création de métadonnées de documents contenant du texte et des images, la collecte de tous les éléments de texte pertinents, et l'impression de citations à l'aide de la génération augmentée par récupération (RAG, Retrieval Augmented Generation) multimodale avec Gemini.
Terminez le cours intermédiaire Gérer Kubernetes dans Google Cloud pour recevoir un badge démontrant vos compétences dans les domaines suivants : la gestion des déploiements avec kubectl, la surveillance et le débogage d'applications sur Google Kubernetes Engine (GKE) et les techniques de livraison continue.
Terminez le cours d'introduction Premiers pas avec Dataplex pour démontrer vos compétences dans les domaines suivants : création d'éléments Dataplex, création de types d'aspects et application de ces aspects aux entrées dans Dataplex.
Terminez le cours d'introduction Dégager des insights des données BigQuery pour recevoir un badge démontrant vos compétences dans les domaines suivants : l'écriture de requêtes SQL, l'interrogation de tables publiques, le chargement d'exemples de données dans BigQuery, la résolution d'erreurs de syntaxe courantes avec l'outil de validation des requêtes de BigQuery et la création de rapports dans Looker Studio en se connectant aux données BigQuery.
Dans ce cours, les utilisateurs expérimentés de Google Cloud apprendront à décrire et lancer des ressources cloud avec Terraform. Il s'agit d'un outil Open Source qui codifie les API dans des fichiers de configuration déclaratifs pouvant être partagés par les membres d'une équipe, traités comme du code, modifiés, révisés et gérés par version. Dans ces ateliers pratiques, vous utiliserez des exemples de modèles et apprendrez à lancer une série de configurations, allant de serveurs simples à des applications avec équilibrage de charge complet.
Il s'agit du deuxième cours d'une série en deux parties sur les bases de la facturation et de la gestion des coûts Google Cloud. Ce cours s'adresse particulièrement aux personnes qui travaillent dans des services financiers ou informatiques, et qui sont chargées d'optimiser l'infrastructure cloud de leur organisation. Dans ce cours, vous découvrirez plusieurs façons de contrôler et d'optimiser vos coûts Google Cloud, y compris en configurant des budgets et des alertes, en gérant les limites de quota et en bénéficiant de remises sur engagement d'utilisation. Dans les ateliers pratiques, vous utiliserez divers outils pour contrôler et optimiser vos coûts Google Cloud, ou pour inciter vos équipes technologiques à suivre les bonnes pratiques dans ce domaine.
Le cœur de Contact Center AI est son cœur de conversation, et ses interactions humaines redéfinissent les possibilités de conversations basées sur l'IA. Dans cette mission, vous apprendrez à créer un agent virtuel, à concevoir des flux de conversation votre agent virtuel et ajoutez une passerelle téléphonique à un agent virtuel. Terminez cette quête, y compris le Labo du défi à la fin, pour recevoir un badge numérique exclusif de Google Cloud. Le laboratoire de défi ne fournit pas d'étapes normatives, il nécessite la création de solutions avec un minimum de conseils et testera vos compétences en technologie Google Cloud.
For everyone using Google Cloud Platform for the first time, getting familar with gcloud, Google Cloud's command line, will help you get up to speed faster. In this quest, you'll learn how to install and configure Cloud SDK, then use gcloud to perform some basic operations like creating VMs, networks, using BigQuery, and using gsutil to perform operations.
Obtenez un badge de compétence en terminant le cours intermédiaire Créer et déployer des solutions de machine learning sur Vertex. Vous y apprendrez à utiliser la plate-forme Vertex AI de Google Cloud, AutoML et les services d'entraînement personnalisés pour entraîner, évaluer, régler, expliquer et déployer des modèles de machine learning. Ce cours, qui ouvre droit à un badge de compétence, est destiné aux data scientists et aux ingénieurs en machine learning. Un badge de compétence est un badge numérique exclusif délivré par Google Cloud. Il atteste de votre expertise des produits et services Google Cloud et de votre capacité à mettre en pratique vos connaissances dans un environnement concret et interactif. Terminez ce cours et passez l'évaluation finale de l'atelier challenge pour recevoir un badge de compétence que vous pourrez partager avec votre réseau.
Terminez le cours d'introduction Créer et gérer des instances Bigtable pour recevoir un badge démontrant vos compétences dans les domaines suivants : la création d'instances, la conception de schémas, l'interrogation de données et la réalisation de tâches d'administration dans Bigtable, y compris la surveillance des performances et la configuration de l'autoscaling et de la réplication de nœuds.
Obtenez un badge de compétence en suivant le cours App Engine : 3 applications, où vous apprendrez à utiliser App Engine avec Python, Go et PHP.
Les interfaces de programmation d'applications Google Cloud permettent d'interagir avec Google Cloud Services par programme. Cette quête vous familiarisera avec différentes API de GCP, que vous apprendrez à utiliser avec Google APIs Explorer, un outil permettant de parcourir les API et d'exécuter leurs méthodes de manière interactive. En apprenant à transférer des données entre des buckets Cloud Storage, à déployer des instances de Compute Engine, à configurer des clusters Dataproc et bien plus encore, Exploring APIs vous fera réaliser la puissance des API et la raison pour laquelle elles sont utilisées presque exclusivement par des utilisateurs expérimentés de GCP. Lancez-vous dans cette quête dès aujourd'hui.
Cloud SQL is a fully managed database service that stands out from its peers due to high performance, seamless integration, and impressive scalability. In this quest you will receive hands-on practice with the basics of Cloud SQL and quickly progress to advanced features, which you will apply to production frameworks and application environments. From creating instances and querying data with SQL, to building Deployment Manager scripts and connecting Cloud SQL instances with applications run on GKE containers, this quest will give you the knowledge and experience needed so you can start integrating this service right away.
Ce cours d'introduction explique aux développeurs d'applications comment l'écosystème de Google Cloud peut les aider à créer des applications cloud natives sécurisées, évolutives et intelligentes. Vous apprendrez à créer et à faire évoluer des applications sans configurer d'infrastructure, à exécuter des analyses de données, à dégager des insights à partir de données, et à utiliser des API de ML pré-entraînées pour tirer parti du machine learning, même si vous n'êtes pas un expert en la matière. Vous découvrirez également l'intégration parfaite de divers services et API de Google afin de créer des applications intelligentes.
Dans cette quête, vous découvrirez les 4 types d'architectures de sites Web disponibles dans Google Cloud pour vous assurer que votre site Web est disponible et évolutif. Terminez cette quête, y compris le Labo du défi à la fin, pour recevoir un badge numérique exclusif de Google Cloud. Le Challenge Lab ne fournit pas d'étapes normatives, mais nécessite la création de solutions avec un minimum de conseils et testera vos compétences en technologie Google Cloud. Cette quête est basée sur la série de vidéos Get Cooking in Cloud.
Surpassez vos concurrents grâce au DevOps. Le DevOps est un mouvement organisationnel et culturel visant à accélérer la livraison de logiciels, à améliorer la fiabilité des services et à permettre aux acteurs du développement logiciel d'être copropriétaires de leur travail. Dans ce cours, vous allez apprendre à utiliser Google Cloud pour optimiser les délais, la stabilité, la disponibilité et la sécurité de vos livraisons de logiciels. Le programme DevOps Research and Assessment a rejoint Google Cloud. Comment votre équipe se positionne-t-elle ? Répondez à ce quiz à choix multiples de cinq questions pour le découvrir !
La gestion des réseaux est l'un des aspects les plus importants du cloud computing. Il s'agit de la structure sous-jacente de Google Cloud, qui relie l'ensemble de vos ressources et services entre eux. Ce cours aborde les services de gestion des réseaux essentiels de Google Cloud et vous permet de vous familiariser avec des outils spécialisés dans le développement de réseaux matures grâce à des ateliers pratiques. De la découverte des tenants et aboutissants des VPC à la création d'équilibreurs de charge professionnels, Automatiser le déploiement et gérer le trafic sur un réseau Google Cloud vous permettra d'acquérir l'expérience pratique nécessaire pour développer des réseaux robustes.
La sécurité est un aspect primordial des services Google Cloud. C'est pourquoi Google Cloud a développé des outils spécifiques pour garantir la sécurité de vos projets et le bon fonctionnement de l'authentification. Dans ce cours d'introduction, vous allez pouvoir vous familiariser avec le service Identity and Access Management (IAM) de Google Cloud, la référence en termes de gestion des comptes utilisateur et de machines virtuelles. Vous développerez vos compétences en sécurité réseau en provisionnant des VPC et des VPN, et vous découvrirez les outils existants pour lutter contre les menaces de sécurité et la perte de données.
TensorFlow is an open source software library for high performance numerical computation that's great for writing models that can train and run on platforms ranging from your laptop to a fleet of servers in the Cloud to an edge device. This quest takes you beyond the basics of using predefined models and teaches you how to build, train and deploy your own on Google Cloud.
L'utilisation de la puissance de calcul à grande échelle pour détecter des modèles et lire des images est l'une des technologies fondamentales de l'IA, des voitures sans conducteur à la reconnaissance faciale. Google Cloud Platform offre une vitesse et une précision de pointe grâce à des systèmes qui peuvent être utilisés simplement en appelant des API. Doté en plus d'une multitude d'API, GCP propose un outil pour pratiquement toutes les tâches de machine learning. Dans ce cours d'introduction, vous allez vous familiariser avec le machine learning et son application au traitement de l'image. Au cours de divers ateliers, vous allez étiqueter des images, détecter des visages et des points de repère, mais aussi extraire, analyser et traduire du texte à partir d'images.
Il n'a échappé à personne que le machine learning est une technologie très dynamique, et Google Cloud Platform a joué un rôle déterminant dans son développement. Doté d'une multitude d'API, GCP propose un outil pour pratiquement toutes les tâches de machine learning. Avec ce cours d'introduction, vous allez vous familiariser avec le machine learning et son application au traitement du langage. Au cours de divers ateliers, vous allez extraire des entités à partir de texte, effectuer une analyse des sentiments et de la syntaxe, ainsi que transcrire du contenu audio avec l'API Speech-to-Text.
In this quest you will get hands-on experience writing infrastructure as code with Terraform.
In this quest, you will gain hands-on experience on several topics in Google Workspace Administration including security, provisioning users and groups, managing applications, and managing Google Meet.
Firebase is a backend-as-service (Bass) platform for creating mobile and web applications. In this quest you will learn to build serverless web apps, import data into a serverless database, and build a Google Assistant application with Firebase and its Google Cloud integrations. Looking for a hands on challenge lab to demonstrate your skills and validate your knowledge? On completing this quest, enroll in and finish the additional challenge lab at the end of this quest to receive an exclusive Google Cloud digital badge.
This course offers hands-on practice with migrating MySQL data to Cloud SQL using Database Migration Service. You start with an introductory lab that briefly reviews how to get started with Cloud SQL for MySQL, including how to connect to Cloud SQL instances using the Cloud Console. Then, you continue with two labs focused on migrating MySQL databases to Cloud SQL using different job types and connectivity options available in Database Migration Service. The course ends with a lab on migrating MySQL user data when running Database Migration Service jobs.
Learn the ins and outs of Google Cloud's operations suite, an important service for generating insights into the health of your applications. It provides a wealth of information in application monitoring, report logging, and diagnoses. These labs will give you hands-on practice with and will teach you how to monitor virtual machines, generate logs and alerts, and create custom metrics for application data. It is recommended that the students have at least earned a Badge by completing the Google Cloud Essentials. Looking for a hands on challenge lab to demonstrate your skills and validate your knowledge? On completing this course, enroll in and finish the challenge lab at the end of the Monitor and Log with Google Cloud Operations Suite to receive an exclusive Google Cloud digital badge.
Il n'a échappé à personne que le machine learning est une technologie très dynamique, et Google Cloud Platform a joué un rôle déterminant dans son développement. Doté d'une multitude d'API.
Kubernetes est le système d'orchestration de conteneurs le plus populaire, et Google Kubernetes Engine a été conçu spécifiquement pour les déploiements gérés de Kubernetes dans Google Cloud. Dans ce cours de niveau avancé, vous allez suivre des ateliers pratiques pour apprendre à configurer les images et les conteneurs Docker, ainsi qu'à déployer des applications Kubernetes Engine opérationnelles. Vous allez également acquérir les compétences nécessaires pour intégrer l'orchestration de conteneurs à votre propre workflow. Vous cherchez un atelier challenge pratique pour démontrer vos compétences et valider vos connaissances ? Suivez cet atelier challenge complémentaire après avoir terminé ce cours et le cours Déployer des applications Kubernetes sur Google Cloud pour recevoir un badge numérique Google Cloud exclusif.
Cette quête fondamentale est unique parmi les autres offres Qwiklabs. Les ateliers ont été conçus pour former les professionnels de l'informatique aux thèmes et aux services figurant dans la certification Google Cloud.
Si vous êtes un développeur cloud débutant et recherchez des exercices pratiques plus poussés au-delà des bases de Google Cloud, ce cours est fait pour vous. Il vous permettra d'acquérir de l'expérience pratique grâce aux ateliers qui traitent en profondeur de Cloud Storage et d'autres services applicatifs clés tels que Monitoring et Cloud Functions. Vous développerez des compétences précieuses que vous pourrez utiliser dans tous vos projets Google Cloud.
Dans ce cours d'introduction, vous allez pouvoir vous familiariser avec les outils et services fondamentaux de Google Cloud. Des vidéos facultatives vous fourniront davantage de contexte et vous permettront de réviser les concepts abordés lors des ateliers pratiques. Ce premier cours sur les bases de Google Cloud est recommandé aux personnes qui s'intéressent à Google Cloud. Vous pouvez le suivre sans aucune connaissance (ou presque) du cloud et, à la fin, vous aurez acquis des compétences pratiques utiles pour lancer votre premier projet Google Cloud. De l'écriture de lignes de commande Cloud Shell au déploiement de votre première machine virtuelle en passant par l'exécution d'applications sur Kubernetes Engine ou avec l'équilibrage de charge, 'Les bases de Google Cloud' constitue une excellente introduction aux fonctionnalités de base de la plate-forme.
Ce cours d'introduction est unique en son genre parmi les autres offres de cours. Il se compose d'ateliers pratiques conçus pour permettre aux professionnels de l'informatique de se familiariser avec les sujets et les services au programme de la certification Google Cloud Certified Associate Cloud Engineer. De l'IAM à la gestion de réseaux en passant par le déploiement avec Kubernetes Engine, vous allez suivre dans ce cours des ateliers spécifiques qui mettront à l'épreuve vos connaissances sur Google Cloud. Attention : même si ces ateliers constituent une bonne base pour développer vos compétences, nous vous recommandons de consulter en supplément le guide de l'examen et les autres ressources de préparation disponibles.
Aujourd'hui, le big data, le machine learning et l'intelligence artificielle sont des thèmes en vogue dans le domaine de l'informatique. Ce sont toutefois des disciplines pointues, pour lesquelles il n'est pas toujours simple de trouver des documents de référence. Heureusement, Google Cloud propose des services conviviaux dédiés, ainsi que ce cours d'introduction, pour vous aider à faire vos premiers pas avec des outils comme BigQuery, l'API Cloud Speech et Video Intelligence.
In this course you will learn how to use several BigQuery ML features to improve retail use cases. Predict the demand for bike rentals in NYC with demand forecasting, and see how to use BigQuery ML for a classification task that predicts the likelihood of a website visitor making a purchase.
This advanced-level quest is unique amongst the other catalog offerings. The labs have been curated to give IT professionals hands-on practice with topics and services that appear in the Google Cloud Certified Professional Data Engineer Certification. From Big Query, to Dataprep, to Cloud Composer, this quest is composed of specific labs that will put your Google Cloud data engineering knowledge to the test. Be aware that while practice with these labs will increase your skills and abilities, you will need other preparation, too. The exam is quite challenging and external studying, experience, and/or background in cloud data engineering is recommended. Looking for a hands on challenge lab to demonstrate your skills and validate your knowledge? On completing this quest, enroll in and finish the additional challenge lab at the end of the Engineer Data in the Google Cloud to receive an exclusive Google Cloud digital badge.
Créer des modèles de machine learning en quelques minutes au lieu de plusieurs heures grâce à SQL, ça vous intéresse ? BigQuery ML démocratise le machine learning en permettant aux analystes de données de créer, d'entraîner et d'évaluer des modèles de ML, puis de les utiliser pour faire des prédictions, en s'appuyant sur leurs outils SQL et leurs connaissances actuelles dans ce langage. Dans cette série d'ateliers, vous allez essayer différents types de modèles et apprendre ce qui caractérise un bon modèle.
Terminez le cours intermédiaire Créer des modèles de ML avec BigQuery ML pour recevoir un badge démontrant vos compétences dans les domaines suivants : la création et l'évaluation de modèles de machine learning avec BigQuery ML pour générer des prédictions de données.
Terminez le cours intermédiaire Ingénierie des données pour la modélisation prédictive avec BigQuery ML pour recevoir un badge démontrant vos compétences dans les domaines suivants : la création de pipelines de transformation des données dans BigQuery avec Dataprep by Trifacta ; l'utilisation de Cloud Storage, Dataflow et BigQuery pour créer des workflows ETL (Extract, Transform and Load) ; et la création de modèles de machine learning avec BigQuery ML.
Obtenez le badge de compétence Débutant en suivant le cours Cloud Run Functions : 3 applications, dans lequel vous apprendrez à utiliser les fonctions Cloud Run via la console Google Cloud et la ligne de commande.
Cloud Storage, Cloud Functions et Cloud Pub/Sub sont tous des services Google Cloud Platform qui peuvent être utilisés pour stocker, traiter et gérer des données. Ces trois services peuvent être utilisés ensemble pour créer différentes applications basées sur les données. Dans ce cours qui ouvre droit à un badge de compétence, vous allez utiliser Cloud Storage pour stocker des images, Cloud Functions pour les traiter et Cloud Pub/Sub pour les envoyer à une autre application.
Cloud Storage, Cloud Functions et Cloud Pub/Sub sont tous des services Google Cloud Platform qui peuvent être utilisés pour stocker, traiter et gérer des données. Ces trois services peuvent être utilisés ensemble pour créer différentes applications basées sur les données. Dans ce cours, vous allez utiliser Cloud Storage pour stocker des images, Cloud Functions pour les traiter et Cloud Pub/Sub pour les envoyer à une autre application.
Terminez le cours d'introduction Préparer des données pour les API de ML sur Google Cloud pour recevoir un badge démontrant vos compétences dans les domaines suivants : le nettoyage des données avec Dataprep by Trifacta, l'exécution de pipelines de données dans Dataflow, la création de clusters et l'exécution de jobs Apache Spark dans Dataproc, et l'appel d'API de ML comme l'API Cloud Natural Language, l'API Google Cloud Speech-to-Text et l'API Video Intelligence.
In this advanced-level quest, you will learn how to harness serious Google Cloud computing power to run big data and machine learning jobs. The hands-on labs will give you use cases, and you will be tasked with implementing big data and machine learning practices utilized by Google’s very own Solutions Architecture team. From running Big Query analytics on tens of thousands of basketball games, to training TensorFlow image classifiers, you will quickly see why Google Cloud is the go-to platform for running big data and machine learning jobs.
Obtenez le badge de compétence de niveau intermédiaire en suivant le cours Classer des images avec TensorFlow sur Google Cloud. Vous y apprendrez à utiliser TensorFlow et Vertex AI pour créer et entraîner des modèles de machine learning. Vous interagissez principalement avec les notebooks Vertex AI Workbench gérés par l'utilisateur.
Obtenez un badge de compétence débutant en suivant le cours Automatiser la collecte de données à grande échelle avec Document AI. Dans ce cours, vous allez apprendre à extraire, traiter et capturer des données à l'aide de Document AI.
Obtenez un badge de compétence avancé en suivant le cours Utiliser des API de machine learning sur Google Cloud, qui présente les fonctionnalités de base des technologies de machine learning et d'IA suivantes : l'API Cloud Vision, l'API Cloud Translation et l'API Cloud Natural Language.
In this quest you will use a collection of Google APIs that are all related to language, and speech. You will use the Speech-to-Text API to transcribe an audio file into a text file, the Cloud Translation API to translate from one language to another, the Cloud Translation API to detect what language is being used and translate to a different language, the Natural Language API to classify text and analyze sentiment, and create synthetic speech.
Préparez-vous pour Anthos. Cette collection d'ateliers pratiques sur les bonnes pratiques Google Kubernetes Engine se concentre sur la sécurité à grande échelle lorsque vous déployez et gérez des environnements GKE de production, et plus particulièrement sur le contrôle des accès basé sur les rôles, le renforcement, la mise en réseau VPC et l'autorisation binaire.
Blockchain and related technologies, such as distributed ledger and distributed apps, are becoming new value drivers and solution priorities in many industries. In this course you will gain hands-on experience with distributed ledger and the exploration of blockchain datasets in Google Cloud. It brings the research and solution work of Google's Allen Day into self-paced labs for you to run and learn directly. Since this course uses advanced SQL in BigQuery, a SQL-in-BigQuery refresher lab is at the start.
Cloud Logging is a fully managed service that performs at scale. It can ingest application and system log data from thousands of VMs and, even better, analyze all that log data in real time. In this fundamental-level Quest, you learn how to store, search, analyze, monitor, and alert on log data and events from Google Cloud. The labs in the Quest give you hands-on practice using Cloud Logging to maximize your learning experience and provide insight on how you can use Cloud Logging to your own Google Cloud environment.
Terminez le cours d'introduction Créer et gérer des instances Cloud Spanner pour recevoir un badge démontrant vos compétences dans les domaines suivants : créer des instances et des bases de données Cloud Spanner et interagir avec elles ; charger des bases de données Cloud Spanner à l'aide de différentes techniques ; sauvegarder des bases de données Cloud Spanner, définir des schémas et comprendre les plans de requête ; déployer une application Web moderne connectée à une instance Cloud Spanner.
Terminez le cours d'introduction Créer et gérer des instances AlloyDB pour recevoir un badge démontrant vos compétences dans les domaines suivants : effectuer les principales tâches et opérations AlloyDB, migrer de PostgreSQL vers AlloyDB, administrer une base de données AlloyDB et accélérer les requêtes analytiques à l'aide du moteur de données en colonnes AlloyDB.
This quest introduces you to Vault and teaches you how to secure, store, and tightly control access to tokens, passwords, certificates, and encryption keys to protect secrets and other sensitive data.
Validez le cours Protéger le trafic Cloud avec la sécurité Chrome Enterprise Premium et obtenez un badge attestant de vos compétences dans les domaines suivants : fournir un accès sécurisé aux applications et services critiques avec Chrome Enterprise Premium, améliorer la stratégie de sécurité avec une plate-forme zéro confiance moderne, fournir un accès sécurisé aux ressources en fonction du contexte et en contrôlant les identités, et gérer les charges de travail de cloud hybride à l'aide d'un connecteur client.
In this course you will learn how you to harness serious Google Cloud power and infrastructure. The hands-on labs will give you use cases and you will be tasked with implementing scaling practices utilized by Google’s very own Solutions Architecture team. From developing enterprise grade load balancing and autoscaling, to building continuous delivery pipelines, Google Cloud Solutions I: Scaling your Infrastructure will teach you best practices for taking your Google Cloud projects to the next level.
Earn a skill badge by completing the Configure your Workplace: Google Workspace for IT Admins quest, where you will get try out the Admin role for Workspace and learn to provision Groups, manage applications, security, and manage Meet. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete the skill badge quest, and final assessment challenge lab, to receive a digital badge that you can share with your network.
Terminez le cours intermédiaire Implémenter des pratiques de base pour la sécurité du cloud sur Google Cloud pour recevoir un badge démontrant vos compétences dans les domaines suivants : la création et l'attribution de rôles avec Identity and Access Management (IAM) ; la création et la gestion de comptes de service ; l'activation d'une connectivité privée sur les réseaux de cloud privé virtuel (VPC) ; la restriction de l'accès aux applications avec Identity-Aware Proxy ; la gestion des clés et des données chiffrées avec Cloud Key Management Service (KMS) ; et la création d'un cluster Kubernetes privé.
Terminez le cours d'introduction Migrer des données MySQL vers Cloud SQL à l’aide de Database Migration Service pour recevoir un badge démontrant vos compétences dans les domaines suivants : migration de données MySQL vers Cloud SQL à l'aide de différents types de jobs et différentes options de connectivité disponibles dans Database Migration Service et migration de données utilisateur MySQL lors de l'exécution de jobs Database Migration Service.
Obtenez le badge de niveau Débutant Créer et gérer des instances Cloud SQL pour PostgreSQL pour démontrer vos compétences en matière de migration, de configuration et de gestion des instances et bases de données Cloud SQL pour PostgreSQL.
Terminez le cours intermédiaire Développer des applications sans serveur avec Firebase pour recevoir un badge démontrant vos compétences dans les domaines suivants : la conception et la création d'applications Web sans serveur avec Firebase, l'utilisation de Firestore pour gérer des bases de données, l'automatisation des processus de déploiement à l'aide de Cloud Build et l'intégration des fonctionnalités de l'Assistant Google dans vos applications.
Obtenez un badge de compétence en suivant le cours Créer un réseau Google Cloud sécurisé, dans lequel vous découvrirez plusieurs ressources liées à la mise en réseau permettant de créer, de faire évoluer et de sécuriser vos applications sur Google Cloud.
Obtenez un badge de compétence en complétant le cours Développer et sécuriser des API avec Apigee X. Vous y apprendrez comment moderniser vos API, utiliser des comptes de service et l'authentification Google pour accéder de façon sécurisée aux services de backend depuis les proxys d'API Apigee, commercialiser des API à l'aide de produits d'API et de portails pour développeurs, sécuriser des API grâce à des fonctionnalités telles que les clés API, OAuth, les variables privées et la gestion des erreurs, intégrer Apigee avec les services Google Cloud comme Pub/Sub et Cloud Logging, et appeler des API Google Cloud, comme les API Natural Language et Geocoding.
Obtenez un badge de compétence en suivant le cours Surveiller des environnements avec Google Cloud Managed Service pour Prometheus, pendant lequel vous apprendrez à utiliser Kubernetes Monitoring avec Google Cloud Managed Service pour Prometheus.
Obtenez un badge de compétence débutant en suivant le cours Créer un site Web sur Google Cloud. Ce cours s'appuie sur la série Get Cooking in Cloud et aborde les thèmes suivants :Déployer un site Web sur Cloud RunHéberger une application Web sur Compute EngineCréer, déployer et faire évoluer votre site Web sur Google Kubernetes EngineMigrer d'une application monolithique vers une architecture de microservices à l'aide de Cloud Build
Terminez le cours intermédiaire Développer des applications sans serveur sur Cloud Run pour recevoir un badge démontrant vos compétences dans les domaines suivants : l'intégration de Cloud Run à Cloud Storage pour la gestion des données, la conception de systèmes asynchrones résilients à l'aide de Cloud Run et Pub/Sub, la construction de passerelles API REST reposant sur Cloud Run, et la création et le déploiement de services sur Cloud Run.
Twelve years ago Lily started the Pet Theory chain of veterinary clinics, and has been expanding rapidly. Now, Pet Theory is experiencing some growing pains: their appointment scheduling system is not able to handle the increased load, customers aren't receiving lab results reliably through email and text, and veteranerians are spending more time with insurance companies than with their patients. Lily wants to build a cloud-based system that scales better than the legacy solution and doesn't require lots of ongoing maintenance. The team has decided to go with serverless technology. For the labs in the Google Cloud Run Serverless Quest, you will read through a fictitious business scenario in each lab and assist the characters in implementing a serverless solution. Looking for a hands on challenge lab to demonstrate your skills and validate your knowledge? On completing this quest, enroll in and finish the additional challenge lab at the end of this quest to receive an exclusive Google…
Terminez le cours intermédiaire Optimiser les coûts pour Google Kubernetes Engine pour recevoir un badge démontrant vos compétences dans les domaines suivants : la création et la gestion de clusters mutualisés, la surveillance de l'utilisation des ressources par espace de noms, la configuration de l'autoscaling des pods et des clusters pour accroître l'efficacité, la configuration de l'équilibrage de charge pour distribuer les ressources de façon optimale et l'implémentation des vérifications d'activité et d'aptitude pour garantir l'intégrité ainsi que la rentabilité des applications.
Terminez le cours Architecture cloud : concevoir, implémenter et gérer pour recevoir un badge démontrant vos compétences dans les domaines suivants : le déploiement d'un site Web accessible publiquement à l'aide de serveurs Web Apache, la configuration d'une VM Compute Engine à l'aide de scripts de démarrage, la configuration d'une session RDP sécurisée à l'aide de règles de pare-feu et d'un hôte bastion Windows, la création d'une image Docker, son déploiement dans un cluster Kubernetes et sa mise à jour, et la création d'une instance Cloud SQL et l'importation d'une base de données MySQL. Le cours lié à ce badge de compétence est une excellente ressource pour comprendre les sujets qui seront abordés dans l'examen de certification Google Cloud Certified Professional Cloud Architect.
Obtenez un badge de compétence en effectuant le cours Déployer et gérer Apigee X dans laquelle vous découvrirez l'architecture Apigee X. Vous y apprendrez également à provisionner une organisation Apigee X dans un projet Google Cloud, à gérer Apigee X à l'aide de l'API et de l'interface utilisateur Apigee, et à utiliser de Cloud Armor et les règles Apigee de protection contre les menaces pour protéger vos API.
Obtenez un badge de compétence en suivant le cours Créer une infrastructure Google Cloud pour les utilisateurs professionnels d'AWS. Vous y apprendrez comment configurer des autorisations IAM, orchestrer des charges de travail à l'aide de Kubernetes, héberger une application Web avec Compute Engine et configurer l'équilibrage de charge.
Obtenez un badge de compétence en suivant le cours Créer une infrastructure Google Cloud pour les utilisateurs professionnels d'Azure. Vous y apprendrez comment configurer des autorisations IAM, orchestrer des charges de travail à l'aide de Kubernetes, héberger une application Web avec Compute Engine et configurer l'équilibrage de charge. Un badge de compétence est un badge numérique exclusif délivré par Google Cloud. Il atteste de votre expertise des produits et services Google Cloud et de votre capacité à mettre en pratique vos connaissances dans un environnement concret et interactif. Terminez ce cours et passez l'évaluation finale de l'atelier challenge pour recevoir un badge de compétence numérique que vous pourrez partager avec votre réseau.
Obtenez le badge de compétence intermédiaire en suivant le cours Implémenter des pipelines CI/CD sur Google Cloud, dans lequel vous apprendrez à utiliser Artifact Registry, Cloud Build et Cloud Deploy. Vous interagirez avec la console Cloud, Google Cloud CLI, Cloud Run et GKE. Vous apprendrez à créer des pipelines d'intégration continue, à stocker et sécuriser des artefacts, à rechercher des failles et à attester de la validité de versions approuvées. Vous vous entraînerez également à déployer des applications sur GKE et Cloud Run.
Terminez le cours d'introduction Surveiller et journaliser avec Google Cloud Observability pour recevoir un badge démontrant vos compétences dans les domaines suivants : la surveillance des machines virtuelles dans Compute Engine, l'utilisation de Cloud Monitoring pour la supervision multiprojet, l'extension des fonctionnalités de surveillance et de journalisation à Cloud Functions, la création et l'envoi de métriques d'application personnalisées, et la configuration d'alertes Cloud Monitoring en fonction de ces métriques personnalisées.
Terminez le cours intermédiaire Implémenter des workflows DevOps dans Google Cloud pour recevoir un badge démontrant vos compétences dans les domaines suivants : la création de dépôts git avec Cloud Source Repositories, le lancement, la gestion et le scaling de déploiements sur Google Kubernetes Engine (GKE), et le développement de l'architecture de pipelines CI/CD qui automatisent la compilation d'images de conteneurs et leur déploiement vers GKE.
Terminez le cours intermédiaire Créer une infrastructure avec Terraform sur Google Cloud pour recevoir un badge démontrant vos compétences dans les domaines suivants : les principes d'Infrastructure as Code (IaC) avec Terraform, le provisionnement et la gestion des ressources Google Cloud avec des configurations Terraform, la gestion efficace des états (local et distant) et la modularisation du code Terraform à des fins de réutilisabilité et d'organisation.
Terminez le cours intermédiaire Déployer des applications Kubernetes sur Google Cloud pour recevoir un badge démontrant vos compétences dans les domaines suivants : la configuration et la création d'images de conteneur Docker, la création et la gestion de clusters Google Kubernetes Engine (GKE), l'utilisation de kubectl pour gérer efficacement les clusters et le déploiement d'applications Kubernetes en appliquant des pratiques de livraison continue (CD) robustes.
Suivez le cours Configurer un réseau Google Cloud et obtenez un badge de compétence. Vous allez apprendre à effectuer des tâches élémentaires de gestion de réseaux sur Google Cloud Platform : créer un réseau personnalisé, ajouter des règles de pare-feu de sous-réseau, puis créer des VM et tester la latence lorsqu'elles communiquent entre elles.
Suivez le cours Développer votre réseau Google Cloud et obtenez un badge de compétence. Dans ce cours, vous avez appris plusieurs façons de déployer et de surveiller des applications. Pour cela, vous avez vu comment parcourir les rôles IAM et ajouter/supprimer l'accès au projet, créer des réseaux VPC, déployer et surveiller des VM Compute Engine, rédiger des requêtes SQL, déployer et surveiller des VM dans Compute Engine, mais aussi comment déployer des applications à l'aide de Kubernetes avec plusieurs approches de déploiement.
Suivez le cours Configurer un environnement de développement d'applications sur Google Cloud et obtenez un badge de compétence. Dans ce cours, vous apprendrez à créer et connecter une infrastructure cloud axée sur le stockage à l'aide des fonctionnalités de base des technologies suivantes Cloud Storage, Identity and Access Management, Cloud Functions et Pub/Sub.
Terminez le cours d'introduction Implémenter Cloud Load Balancing pour Compute Engine pour recevoir un badge démontrant vos compétences dans les domaines suivants : Créer et déployer des machines virtuelles dans Compute Engine Configurer des équilibreurs de charge réseau et d'application.