Souza Pedro
メンバー加入日: 2025
ダイヤモンド リーグ
7811 ポイント
メンバー加入日: 2025
このコースは、技術または財務の担当者で Google Cloud の費用の管理を担う方に最適です。請求先アカウントを設定する方法、 リソースを整理する方法、請求アクセス権限を管理する方法を学びます。 ハンズオンラボでは、請求書を表示する方法、 請求レポートを使用して Google Cloud の費用を追跡する方法、BigQuery や Google スプレッドシートを使用して課金データを分析する方法、 Looker Studio を使用してカスタムの課金ダッシュボードを作成する方法を習得します。動画で紹介されている関連資料には、 こちらの参考資料ドキュメントからアクセスできます。
「BigQuery のデータから分析情報を引き出す」の入門スキルバッジを獲得すると、 SQL クエリの作成、一般公開テーブルに対するクエリの実行、BigQuery へのサンプルデータの読み込み、BigQuery でのクエリ バリデータを使用した一般的な構文エラーのトラブルシューティング、 BigQuery データへの接続による Looker Studio でのレポート作成といったスキルを実証できます。
「Vertex AI におけるプロンプト設計」スキルバッジを獲得できる入門コースを修了すると、 Vertex AI のプロンプト エンジニアリング、画像分析、マルチモーダル生成手法のスキルを実証できます。効果的なプロンプトを作成する方法、目的どおりの生成 AI 出力を生成する方法、 Gemini モデルを実際のマーケティング シナリオに適用する方法を学びます。
企業における AI と ML の利用が拡大し続けるなか、責任を持ってそれを構築することの重要性も増しています。多くの企業にとっての課題は、責任ある AI と口で言うのは簡単でも、それを実践するのは難しいということです。このコースは、責任ある AI を組織で運用化する方法を学びたい方に最適です。 このコースでは、Google Cloud が責任ある AI を現在どのように運用化しているかを、ベスト プラクティスや教訓と併せて学び、責任ある AI に対する独自のアプローチを構築するためのフレームワークとして活用できるようにします。
この入門レベルのマイクロラーニング コースでは、責任ある AI の概要と重要性、および Google が責任ある AI を自社プロダクトにどのように実装しているのかについて説明します。また、Google の AI に関する 7 つの原則についても説明します。
このコースは、大規模言語モデル(LLM)とは何か、どのようなユースケースで活用できるのか、プロンプトのチューニングで LLM のパフォーマンスを高めるにはどうすればよいかについて学習する、入門レベルのマイクロ ラーニング コースです。独自の生成 AI アプリを開発する際に利用できる Google ツールも紹介します。
この入門レベルのマイクロラーニング コースでは、生成 AI の概要、利用方法、従来の機械学習の手法との違いについて説明します。独自の生成 AI アプリを作成する際に利用できる Google ツールも紹介します。
このコースでは、Model Armor の重要なセキュリティ機能を復習し、このサービスを使いこなすための技術が身についていることを確認します。LLM に関連するセキュリティ リスクと、Model Armor にによる AI アプリケーションの保護の仕組みについて説明します。
AI は、革新的な技術である一方で、新たなセキュリティ上の課題を生み出す可能性も否定できません。このコースでは、セキュリティとデータ保護の責任者を対象に、組織内で AI を安全に管理するための戦略を説明します。AI 特有のリスクを事前に特定して軽減し、機密データを保護し、コンプライアンスを確保しながら、復元力の高い AI インフラストラクチャを構築するための枠組みについて学ぶ。4 つの業界のユースケースを通して、これらの戦略が実際の場面でどのように活用されているかを探る。
このコースでは、AI のプライバシーと安全性に関する重要なトピックを紹介します。具体的には、Google Cloud プロダクトとオープンソース ツールを使用して AI のプライバシーと安全性の推奨プラクティスを実装するための実践的な方法とツールを検証します。
このコースでは、AI の解釈可能性と透明性のコンセプトを紹介します。デベロッパーとエンジニアにとって AI の透明性が重要であることについて説明します。データと AI モデルの両方で解釈可能性と透明性を達成できる実践的な方法とツールを検証します。
このコースでは、責任ある AI および AI に関する原則のコンセプトを紹介します。AI / ML の実践における公平性とバイアスを特定し、バイアスを軽減するための実践的な手法を取り扱います。具体的には、Google Cloud プロダクトとオープンソース ツールを使用して責任ある AI のベスト プラクティスを実装するための実践的な方法とツールを検証します。
このコースでは、ML の実務担当者に、生成 AI モデルと予測 AI モデルの両方を評価するための重要なツール、手法、ベスト プラクティスを身につけていただきます。モデル評価は、ML システムが本番環境で信頼性が高く、正確で、高性能な結果を確実に提供するための重要な分野です。 参加者は、さまざまな評価指標、方法論のほか、さまざまなモデルタイプやタスクにおけるそれらの適切な適用について理解を深めます。このコースでは、生成 AI モデルによってもたらされる固有の課題に重点を置き、それらの課題に効果的に取り組むための戦略を提供します。参加者は、Google Cloud の Vertex AI プラットフォームを活用して、モデルの選択、最適化、継続的なモニタリングのための堅牢な評価プロセスを実装する方法を学びます。
このコースでは、生成 AI モデルのデプロイと管理において MLOps チームが直面する特有の課題に対処するために必要な知識とツールを提供し、AI チームが MLOps プロセスを合理化して生成 AI プロジェクトを成功させるうえで Vertex AI がどのように役立つかを説明します。
このコースでは、Looker Studio の基礎だけでなく、Looker Studio Pro の高度な特長や機能について説明します。チーム ワークスペースを活用して効率的なコラボレーションを実現する方法、データのセキュリティと管理を強化する方法、Google Cloud カスタマーケアを活用してサポートを受ける方法について学びます。また、データの可視化やレポート機能を向上させるプレミアム機能を紹介します。このコースは、Looker Studio の基本的な知識をすでに持っていて、ビジネスや組織でその可能性を最大限に引き出したいと考えているユーザーを対象としています。
「Looker を使ってみる」クエストを修了すると スキルバッジを獲得できます。 このクエストでは、Looker Studio と Looker を使用してデータを分析、可視化、キュレートする方法 を学びます。
「Compute Engine での Cloud Load Balancing の実装」入門コースを修了してスキルバッジを獲得すると、次のスキルを実証できます: Compute Engine における仮想マシンの作成とデプロイ、 ネットワーク ロードバランサとアプリケーション ロードバランサの構成。
「Google Cloud の ML API 用にデータを準備」コースの入門スキルバッジを獲得できるアクティビティを修了すると、 Dataprep by Trifacta を使用したデータのクリーニング、Dataflow でのデータ パイプラインの実行、Dataproc でのクラスタの作成と Apache Spark ジョブの実行、 Cloud Natural Language API、Google Cloud Speech-to-Text API、Video Intelligence API などの ML API の呼び出しに関するスキルを証明できます。
安全な Google Cloud ネットワークの構築コースを修了してスキルバッジを獲得しましょう。このコースでは、Google Cloud でアプリケーションを ビルド、スケール、保護するための複数のネットワーク関連リソースについて学習します。
「Google Cloud におけるアプリ開発環境の設定」コースを完了すると、スキルバッジを獲得できます。このコースでは、 Cloud Storage、Identity and Access Management、Cloud Functions、Pub/Sub のテクノロジーの基本機能を使用して、ストレージ中心のクラウド インフラストラクチャを構築し接続する方法を学びます。
Google Cloud コンピューティングの基礎コースは、クラウド コンピューティングのバックグラウンドや経験がほとんどまたはまったくない方を対象としています。クラウドの基礎、ビッグデータ、ML の中核となるコンセプトと、Google Cloud を活用できる場面や方法の概要を示します。 この一連のコースを修了すると、これらのコンセプトについて明確に理解し、実践的なスキルを実証できます。 このコースは、次の順で完了する必要があります。 1. Google Cloud コンピューティングの基礎: クラウド コンピューティングの基本 2. Google Cloud コンピューティングの基礎: Google Cloud のインフラストラクチャ 3. Google Cloud コンピューティングの基礎: Google Cloud でのネットワーキングとセキュリティ 4. Google Cloud コンピューティングの基礎: Google Cloud のデータ、ML、AI このシリーズの最後のコースでは、マネージド ビッグデータ サービス、ML とその価値、スキルバッジを獲得して Google Cloud に関するスキルセットをさらに実証する方法について説明します。
Google Cloud コンピューティングの基礎コースは、クラウド コンピューティングのバックグラウンドや経験がほとんどまたはまったくない方を対象としています。クラウドの基礎、ビッグデータ、ML の中核となるコンセプトと、Google Cloud を活用できる場面や方法の概要を示します。 この一連のコースを修了すると、これらのコンセプトについて明確に理解し、実践的なスキルを実証できます。 このコースは、次の順で完了する必要があります。 1. Google Cloud コンピューティングの基礎: クラウド コンピューティングの基本 2. Google Cloud コンピューティングの基礎: Google Cloud のインフラストラクチャGoogle Cloud コンピューティングの基礎: Google Cloud でのネットワーキングとセキュリティ 4. Google Cloud コンピューティングの基礎: Google Cloud のデータ、ML、AI この 3 番目のコースでは、クラウドの自動化、管理ツール、安全なネットワークの構築について説明します。
Google Cloud コンピューティングの基礎コースは、クラウド コンピューティングのバックグラウンドや経験がほとんどまたはまったくない方を対象としています。クラウドの基礎、ビッグデータ、ML の中核となるコンセプトと、Google Cloud を活用できる場面や方法の概要を示します。 この一連のコースを修了すると、これらのコンセプトについて明確に理解し、実践的なスキルを実証できます。 このコースは、次の順で完了する必要があります。 1. Google Cloud コンピューティングの基礎: クラウド コンピューティングの基本 2. Google Cloud コンピューティングの基礎: Google Cloud のインフラストラクチャ 3. Google Cloud コンピューティングの基礎: Google Cloud でのネットワーキングとセキュリティ 4. Google Cloud コンピューティングの基礎: Google Cloud のデータ、ML、AI
Google Cloud コンピューティングの基礎コースは、クラウド コンピューティングのバックグラウンドや経験がほとんどまたはまったくない方を対象としています。クラウドの基礎、ビッグデータ、ML の中核となるコンセプトと、Google Cloud を活用できる場面や方法の概要を示します。 この一連のコースを修了すると、これらのコンセプトについて明確に理解し、実践的なスキルを実証できます。 このコースは、次の順で完了する必要があります。 1. Google Cloud コンピューティングの基礎: クラウド コンピューティングの基本 2. Google Cloud コンピューティングの基礎: Google Cloud のインフラストラクチャ 3. Google Cloud コンピューティングの基礎: Google Cloud でのネットワーキングとセキュリティ 4. Google Cloud コンピューティングの基礎: Google Cloud のデータ、ML、AI この最初のコースでは、クラウド コンピューティングの概要、Google Cloud の使用方法、さまざまなコンピューティング オプションについて説明します。