Unirse Acceder

Luc Pellinger

Miembro desde 2025

Liga de Plata

2215 puntos
Operaciones de aprendizaje automático (MLOps) para la IA generativa Earned may 5, 2025 EDT
Operaciones de aprendizaje automático (MLOps) con Vertex AI: Evaluación de modelos Earned may 5, 2025 EDT
Operaciones de aprendizaje automático (MLOps): Primeros pasos Earned abr 8, 2025 EDT

El objetivo de este curso es equiparte con los conocimientos y las herramientas que necesitas para descubrir los desafíos únicos que enfrentan los equipos de MLOps cuando implementan y administran modelos de IA generativa, y explorar cómo Vertex AI fortalece a los equipos de IA para optimizar los procesos de MLOps y alcanzar el éxito en los proyectos de IA generativa.

Más información

En este curso, los profesionales del aprendizaje automático aprenderán a utilizar las herramientas, las técnicas y las prácticas recomendadas indispensables para evaluar los modelos de IA generativa y predictiva. La evaluación de modelos es una disciplina esencial para garantizar que los sistemas de AA arrojen resultados confiables, exactos y de alto rendimiento en la producción. Los participantes obtendrán información exhaustiva sobre diversas métricas y metodologías de evaluación, además de su aplicación adecuada en diferentes tipos de modelos y tareas. En este curso, se hará énfasis en los desafíos únicos que presentan los modelos de IA generativa y se ofrecerán estrategias para abordarlos de manera eficaz. Con la plataforma de Vertex AI de Google Cloud, los participantes aprenderán a implementar los procesos sólidos de evaluación para la selección, optimización y supervisión continua de modelos.

Más información

En este curso, se presentan a los participantes las herramientas y prácticas recomendadas de MLOps para implementar, evaluar, supervisar y operar sistemas de AA de producción en Google Cloud. Las MLOps son una disciplina enfocada en la implementación, prueba, supervisión y automatización de sistemas de AA en producción. Los ingenieros profesionales de aprendizaje automático usan herramientas para mejorar y evaluar continuamente los modelos implementados. Trabajan con científicos de datos (o pueden serlo) que desarrollan modelos para ofrecer velocidad y rigor en la implementación de modelos con el mejor rendimiento.

Más información