siva sai P
メンバー加入日: 2019
ゴールドリーグ
48660 ポイント
メンバー加入日: 2019
これは、「Google Cloud サイバーセキュリティ認定証」プログラムの 5 つのコースのうちの 1 つ目です。このコースでは、セキュリティ ライフサイクル、デジタル トランスフォーメーション、クラウド コンピューティングの主要なコンセプトなど、サイバーセキュリティの基本を学びます。エントリーレベルのクラウド セキュリティ アナリストがタスクを自動化するために使用する一般的なツールを特定します。
これは、「Google Cloud サイバーセキュリティ認定証」プログラムの 5 つのコースのうちの 2 つ目です。このコースでは、広く使用されているクラウド リスク管理フレームワークについて学習し、セキュリティ ドメイン、コンプライアンス ライフサイクル、HIPAA、NIST CSF、SOC などの業界標準について確認します。リスクの特定、セキュリティ管理の実装、コンプライアンス評価、データ保護管理のスキルを身につけます。さらに、リスクとコンプライアンスに特化した Google Cloud ツールとマルチクラウド ツールを実際に使用する経験も積むことができます。また、就職活動や面接の準備に関するテクニックも取り入れ、クラウド リスク管理の複雑な状況を理解し、効果的に対処するための包括的な基礎を提供します。
これは、「Google Cloud サイバーセキュリティ認定証」プログラムの 5 つのコースのうちの 3 つ目です。このコースでは、クラウド環境における ID 管理とアクセス制御の原則について説明します。AAA(認証、認可、監査)、認証情報の処理、証明書の管理などの重要な要素を取り上げます。また、脅威と脆弱性の管理、クラウドネイティブの原則、データ保護対策といった重要なトピックについても学びます。このコースを修了すると、クラウドベースのリソースを保護し、組織の機密情報を守るために必要なスキルと知識を身につけることができます。さらに、キャリア リソースを活用し、面接のテクニックを磨きながら、プロフェッショナルとしての次のキャリア ステップに備えます。
これは、「Google Cloud サイバーセキュリティ認定証」プログラムの 5 つのコースのうちの 5 つ目です。このコースでは、クラウド セキュリティの原則、リスク管理、脆弱性の特定、インシデント管理、危機管理コミュニケーションなどの重要なコンセプトを組み合わせて適用する、インタラクティブな集大成プロジェクトに取り組みます。また、履歴書の最終更新を行い、新しい面接テクニックを駆使して、この分野の就職活動や面接に自信を持って臨めるようにします。
これは、「Google Cloud サイバーセキュリティ認定証」プログラムの 5 つのコースのうちの 4 つ目です。このコースでは、ロギング、セキュリティ、アラートのモニタリングの機能と、攻撃を軽減する手法の開発に重点を置いて説明します。脅威フィードのカスタマイズ、インシデント管理、危機管理コミュニケーション、根本原因分析、インシデント対応、イベント後のコミュニケーションに関する貴重な知識を習得できます。Google Cloud ツールを使用して、セキュリティ侵害インジケーターを特定し、ビジネスの継続性と障害復旧に備える方法も学びます。これらの技術スキルに加えて、履歴書の更新や面接のテクニックの練習も行います。
This is the fourth of five courses in the Google Cloud Cybersecurity Certificate. In this course, you’ll focus on developing capabilities in logging, security, and alert monitoring, along with techniques for mitigating attacks. You'll gain valuable knowledge in customizing threat feeds, managing incidents, handling crisis communications, conducting root cause analysis, and mastering incident response and post-event communications. Using Google Cloud tools, you'll learn to identify indicators of compromise and prepare for business continuity and disaster recovery. Alongside these technical skills, you'll continue updating your resume and practicing interview techniques.
This is the fifth of five courses in the Google Cloud Cybersecurity Certificate. In this course, you’ll combine and apply key concepts such as cloud security principles, risk management, identifying vulnerabilities, incident management, and crisis communications in an interactive capstone project. Additionally, you'll finalize your resume updates and put to practice all the new interview techniques you've learned, preparing you to confidently apply for and interview for jobs in the field.
This is the third of five courses in the Google Cloud Cybersecurity Certificate. In this course, you’ll explore the principles of identity management and access control within a cloud environment, covering key elements like AAA (Authentication, Authorization, and Auditing), credential handling, and certificate management. You'll also explore essential topics in threat and vulnerability management, cloud-native principles, and data protection measures. Upon completing this course, you will have acquired the skills and knowledge necessary to secure cloud-based resources and safeguard sensitive organizational information. Additionally, you'll continue to engage with career resources and hone your interview techniques, preparing you for the next step in your professional journey.
This is the second of five courses in the Google Cloud Cybersecurity Certificate. In this course, you’ll explore widely-used cloud risk management frameworks, exploring security domains, compliance lifecycles, and industry standards such as HIPAA, NIST CSF, and SOC. You'll develop skills in risk identification, implementation of security controls, compliance evaluation, and data protection management. Additionally, you'll gain hands-on experience with Google Cloud and multi-cloud tools specific to risk and compliance. This course also incorporates job application and interview preparation techniques, offering a comprehensive foundation to understand and effectively navigate the complex landscape of cloud risk management.
This is the first of five courses in the Google Cloud Cybersecurity Certificate. In this course, you’ll explore the essentials of cybersecurity, including the security lifecycle, digital transformation, and key cloud computing concepts. You’ll identify common tools used by entry-level cloud security analysts to automate tasks.
Google Cloud コンピューティングの基礎コースは、クラウド コンピューティングのバックグラウンドや経験がほとんどまたはまったくない方を対象としています。クラウドの基礎、ビッグデータ、ML の中核となるコンセプトと、Google Cloud を活用できる場面や方法の概要を示します。 この一連のコースを修了すると、これらのコンセプトについて明確に理解し、実践的なスキルを実証できます。 このコースは、次の順で完了する必要があります。 1. Google Cloud コンピューティングの基礎: クラウド コンピューティングの基本 2. Google Cloud コンピューティングの基礎: Google Cloud のインフラストラクチャ 3. Google Cloud コンピューティングの基礎: Google Cloud でのネットワーキングとセキュリティ 4. Google Cloud コンピューティングの基礎: Google Cloud のデータ、ML、AI このシリーズの最後のコースでは、マネージド ビッグデータ サービス、ML とその価値、スキルバッジを獲得して Google Cloud に関するスキルセットをさらに実証する方法について説明します。
Google Cloud コンピューティングの基礎コースは、クラウド コンピューティングのバックグラウンドや経験がほとんどまたはまったくない方を対象としています。クラウドの基礎、ビッグデータ、ML の中核となるコンセプトと、Google Cloud を活用できる場面や方法の概要を示します。 この一連のコースを修了すると、これらのコンセプトについて明確に理解し、実践的なスキルを実証できます。 このコースは、次の順で完了する必要があります。 1. Google Cloud コンピューティングの基礎: クラウド コンピューティングの基本 2. Google Cloud コンピューティングの基礎: Google Cloud のインフラストラクチャGoogle Cloud コンピューティングの基礎: Google Cloud でのネットワーキングとセキュリティ 4. Google Cloud コンピューティングの基礎: Google Cloud のデータ、ML、AI この 3 番目のコースでは、クラウドの自動化、管理ツール、安全なネットワークの構築について説明します。
Google Cloud コンピューティングの基礎コースは、クラウド コンピューティングのバックグラウンドや経験がほとんどまたはまったくない方を対象としています。クラウドの基礎、ビッグデータ、ML の中核となるコンセプトと、Google Cloud を活用できる場面や方法の概要を示します。 この一連のコースを修了すると、これらのコンセプトについて明確に理解し、実践的なスキルを実証できます。 このコースは、次の順で完了する必要があります。 1. Google Cloud コンピューティングの基礎: クラウド コンピューティングの基本 2. Google Cloud コンピューティングの基礎: Google Cloud のインフラストラクチャ 3. Google Cloud コンピューティングの基礎: Google Cloud でのネットワーキングとセキュリティ 4. Google Cloud コンピューティングの基礎: Google Cloud のデータ、ML、AI
Google Cloud コンピューティングの基礎コースは、クラウド コンピューティングのバックグラウンドや経験がほとんどまたはまったくない方を対象としています。クラウドの基礎、ビッグデータ、ML の中核となるコンセプトと、Google Cloud を活用できる場面や方法の概要を示します。 この一連のコースを修了すると、これらのコンセプトについて明確に理解し、実践的なスキルを実証できます。 このコースは、次の順で完了する必要があります。 1. Google Cloud コンピューティングの基礎: クラウド コンピューティングの基本 2. Google Cloud コンピューティングの基礎: Google Cloud のインフラストラクチャ 3. Google Cloud コンピューティングの基礎: Google Cloud でのネットワーキングとセキュリティ 4. Google Cloud コンピューティングの基礎: Google Cloud のデータ、ML、AI この最初のコースでは、クラウド コンピューティングの概要、Google Cloud の使用方法、さまざまなコンピューティング オプションについて説明します。
「Introduction to Generative AI」、「Introduction to Large Language Models」、「Introduction to Responsible AI」の各コースを修了すると、スキルバッジを獲得できます。最終テストに合格することで、ジェネレーティブ AI の基礎概念を理解していることが証明されます。 スキルバッジは、Google Cloud のプロダクトとサービスに関する知識を認定するために Google Cloud が発行するデジタルバッジです。スキルバッジは、ソーシャル メディアの公開プロフィールを作成してそこに追加することで一般向けに共有できます。
このコースでは、ディープ ラーニングを使用して画像キャプション生成モデルを作成する方法について学習します。エンコーダやデコーダなどの画像キャプション生成モデルのさまざまなコンポーネントと、モデルをトレーニングして評価する方法を学びます。このコースを修了すると、独自の画像キャプション生成モデルを作成し、それを使用して画像のキャプションを生成できるようになります。
このコースでは、生成 AI モデルとのやりとり、ビジネス アイデアのプロトタイプ作成、本番環境へのリリースを行うツールである Vertex AI Studio をご紹介します。現実感のあるユースケースや、興味深い講義、ハンズオンラボを通して、プロンプトの作成から成果の実現に至るまでのライフサイクルを詳細に学び、Gemini マルチモーダル アプリケーションの開発、プロンプトの設計、モデルのチューニングに Vertex AI を活用する方法を学習します。Vertex AI Studio を利用することで、生成 AI をプロジェクトに最大限に活かせるようになることを目指します。
このコースでは、Transformer アーキテクチャと Bidirectional Encoder Representations from Transformers(BERT)モデルの概要について説明します。セルフアテンション機構をはじめとする Transformer アーキテクチャの主要コンポーネントと、それが BERT モデルの構築にどのように使用されているのかについて学習します。さらに、テキスト分類、質問応答、自然言語推論など、BERT を適用可能なその他のタスクについても学習します。このコースの推定所要時間は約 45 分です。
このコースでは、アテンション機構について学習します。アテンション機構とは、ニューラル ネットワークに入力配列の重要な部分を認識させるための高度な技術です。アテンションの仕組みと、アテンションを活用して機械翻訳、テキスト要約、質問応答といったさまざまな ML タスクのパフォーマンスを改善する方法を説明します。
この入門レベルのマイクロラーニング コースでは、生成 AI の概要、利用方法、従来の機械学習の手法との違いについて説明します。独自の生成 AI アプリを作成する際に利用できる Google ツールも紹介します。
このコースでは、機械翻訳、テキスト要約、質問応答などのシーケンス ツー シーケンス タスクに対応する、強力かつ広く使用されている ML アーキテクチャであるエンコーダ / デコーダ アーキテクチャの概要を説明します。エンコーダ / デコーダ アーキテクチャの主要なコンポーネントと、これらのモデルをトレーニングして提供する方法について学習します。対応するラボのチュートリアルでは、詩を生成するためのエンコーダ / デコーダ アーキテクチャの簡単な実装を、TensorFlow で最初からコーディングします。
このコースでは拡散モデルについて説明します。拡散モデルは ML モデル ファミリーの一つで、最近、画像生成分野での有望性が示されました。拡散モデルは物理学、特に熱力学からインスピレーションを得ています。ここ数年、拡散モデルは研究と産業界の両方で広まりました。拡散モデルは、Google Cloud の最先端の画像生成モデルやツールの多くを支える技術です。このコースでは、拡散モデルの背景にある理論と、モデルを Vertex AI でトレーニングしてデプロイする方法について説明します。
この入門レベルのマイクロラーニング コースでは、責任ある AI の概要と重要性、および Google が責任ある AI を自社プロダクトにどのように実装しているのかについて説明します。また、Google の AI に関する 7 つの原則についても説明します。
このコースは、大規模言語モデル(LLM)とは何か、どのようなユースケースで活用できるのか、プロンプトのチューニングで LLM のパフォーマンスを高めるにはどうすればよいかについて学習する、入門レベルのマイクロ ラーニング コースです。独自の生成 AI アプリを開発する際に利用できる Google ツールも紹介します。
Brains? Check. Talent? Check. Growth mindset? We can help with that! It’s not just abilities and talent that bring success - but a growth mindset too. When you cultivate a growth mindset, you embrace obstacles, find opportunity in failure, and learn from mistakes. So whether you’re bootstrapping a startup or your personal career, come exercise your growth mindset muscles and explore a range of startup-focused tech. You’ll get hands-on experience with the tools people around the world use to get to the next stage of growth.
「Google Cloud における Terraform を使用したインフラストラクチャの構築」の中級スキルバッジを獲得すると、 Terraform を使用した Infrastructure as Code(IaC)の原則、Terraform 構成を使用した Google Cloud リソースのプロビジョニングと管理、 状態の効果的な管理(ローカルおよびリモート)、組織内での再利用性を念頭に置いた Terraform コードのモジュール化といったスキルを実証できます。
「Google Kubernetes Engine を使ってみる」コースへようこそ。Kubernetes にご興味をお持ちいただきありがとうございます。Kubernetes は、アプリケーションとハードウェア インフラストラクチャとの間にあるソフトウェア レイヤです。Google Kubernetes Engine は、Google Cloud 上のマネージド サービスとしての Kubernetes を提供します。 このコースでは、Google Kubernetes Engine(一般に GKE と呼ばれています)の基礎と、Google Cloud でアプリケーションをコンテナ化して実行する方法を学びます。このコースでは、まず Google Cloud の基本事項を確認します。続けて、コンテナ、Kubernetes、Kubernetes アーキテクチャ、Kubernetes オペレーションの概要について学びます。
The hands-on labs in this Quest are structured to give experienced app developers hands-on practice with the state-of-the-art developing applications in Google Cloud. The topics align with the Google Cloud Certified Professional Cloud Developer Certification. These labs follow the sequence of activities needed to create and deploy an app in Google Cloud from beginning to end. Be aware that while practice with these labs will increase your skills and abilities, it is recommended that you also review the exam guide and other available preparation resources.
ビッグデータ、機械学習、科学的データ。完璧な組み合わせといえます。このクエストは上級レベルであり、実際の科学的データセットを使用するユースケースに BigQuery、Dataproc、Tensorflow などの GCP サービスを当てはめ、実践的な演習を行います。「科学的データ処理」では、地震データの分析や衛星画像の集約といったタスクを実践し、ビッグデータと機械学習に関するスキルの強化を図ります。これにより、多岐にわたる科学的分野でさまざまな問題に取り組むことができるようになります。
Cloud SQL is a fully managed database service that stands out from its peers due to high performance, seamless integration, and impressive scalability. In this quest you will receive hands-on practice with the basics of Cloud SQL and quickly progress to advanced features, which you will apply to production frameworks and application environments. From creating instances and querying data with SQL, to building Deployment Manager scripts and connecting Cloud SQL instances with applications run on GKE containers, this quest will give you the knowledge and experience needed so you can start integrating this service right away.
In this quest, you will learn about Google Cloud’s IoT Core service and its integration with other services like GCS, Dataprep, Stackdriver and Firestore. The labs in this quest use simulator code to mimic IOT devices and the learning here should empower you to implement the same streaming pipeline with real world IoT devices.
Blockchain and related technologies, such as distributed ledger and distributed apps, are becoming new value drivers and solution priorities in many industries. In this course you will gain hands-on experience with distributed ledger and the exploration of blockchain datasets in Google Cloud. It brings the research and solution work of Google's Allen Day into self-paced labs for you to run and learn directly. Since this course uses advanced SQL in BigQuery, a SQL-in-BigQuery refresher lab is at the start.
データ ウェアハウスの構築または最適化を検討している場合は、BigQuery を使ったデータの抽出、変換、Google Cloud への読み込みに関するおすすめの方法を学びます。この一連のインタラクティブなラボでは、各種の大規模な BigQuery 一般公開データセットを使って独自のデータ ウェアハウスを作成、最適化します。BigQuery は、Google が低料金で提供する NoOps のフルマネージド分析データベースです。インフラストラクチャを所有して管理したり、データベース管理者を配置したりすることなく、テラバイト単位の大規模なデータでクエリを実行できます。また、SQL が採用されており、従量課金制モデルでご利用いただけます。このような特徴を活かし、お客様は有用な情報を得るためのデータ分析に専念できます。
Google Cloud Application Programming Interfaces は、Google Cloud Services とプログラムでインタラクトするメカニズムです。このクエストは、GCP API のハンズオン演習を提供し、APIをブラウズして、実行するツールである Google の API Explorerを通して学習します。クラウドのストレージ間でのデータ移行の方法、コンピュートエンジンインスタンスのデプロイ、Dataprocクラスタの設定などを学ぶことにより、API が強力で、なぜGCPユーザが使用しているかを理解できます。
In this introductory-level quest, you will learn the fundamentals of developing and deploying applications on the Google Cloud Platform. You will get hands-on experience with the Google App Engine framework by launching applications written in languages like Python, Ruby, and Java (just to name a few). You will see first-hand how straightforward and powerful GCP application frameworks are, and how easily they integrate with GCP database, data-loss prevention, and security services.
「BigQuery ML を使用した予測モデリング向けのデータ エンジニアリング」のスキルバッジを獲得できる中級コースを修了すると、 Dataprep by Trifacta を使用した BigQuery へのデータ変換パイプラインの構築、 Cloud Storage、Dataflow、BigQuery を使用した抽出、変換、読み込み(ETL)ワークフローの構築、 BigQuery ML を使用した ML モデルの構築に関するスキルを実証できます。
This advanced-level quest is unique amongst the other catalog offerings. The labs have been curated to give IT professionals hands-on practice with topics and services that appear in the Google Cloud Certified Professional Data Engineer Certification. From Big Query, to Dataprep, to Cloud Composer, this quest is composed of specific labs that will put your Google Cloud data engineering knowledge to the test. Be aware that while practice with these labs will increase your skills and abilities, you will need other preparation, too. The exam is quite challenging and external studying, experience, and/or background in cloud data engineering is recommended. Looking for a hands on challenge lab to demonstrate your skills and validate your knowledge? On completing this quest, enroll in and finish the additional challenge lab at the end of the Engineer Data in the Google Cloud to receive an exclusive Google Cloud digital badge.
DevOps によって 競争優位性を確保します。DevOps とは、ソフトウェア デリバリーを迅速化し、サービスの信頼性を向上させ、 ソフトウェアの開発と運用に影響を与えるステークホルダーの間で共有の当事者意識を高めることを目的とする、組織的、 文化的な考え方や取り組みです。このクエストでは、Google Cloud を使用して ソフトウェア デリバリーの速度、安定性、可用性、安全性を向上させる方法を学びます。 DevOps Research and Assessment チームが Google Cloud に加わりました。自社の DevOps チームの実力はいかがですか? 5 問の多肢選択式テストで評価してみましょう。
Google Cloud での DevOps ワークフローの実装 コースの中級スキルバッジを獲得できるアクティビティを修了すると、 Cloud Source Repositories を使用した Git リポジトリの作成、 Google Kubernetes Engine(GKE)上でのデプロイのリリース、管理、スケール、 コンテナ イメージのビルドと GKE へのデプロイを自動化する CI / CD パイプラインの設計といったスキルを実証できます。
このコースは、技術または財務の担当者で Google Cloud の費用の管理を担う方に最適です。請求先アカウントを設定する方法、 リソースを整理する方法、請求アクセス権限を管理する方法を学びます。 ハンズオンラボでは、請求書を表示する方法、 請求レポートを使用して Google Cloud の費用を追跡する方法、BigQuery や Google スプレッドシートを使用して課金データを分析する方法、 Looker Studio を使用してカスタムの課金ダッシュボードを作成する方法を習得します。動画で紹介されている関連資料には、 こちらの参考資料ドキュメントからアクセスできます。
「BigQuery ML を使用した ML モデルの作成」コースの中級スキルバッジを獲得できるアクティビティを修了すると、 BigQuery ML を使用して ML モデルを作成および評価し、データを予測するスキルを証明できます。
SQL だけを使用して、数時間ではなく数分で ML モデルを構築したいとお考えの場合、BigQuery ML は、データ アナリストが既存の SQL ツールやスキルを使って、ML モデルを作成、トレーニング、 評価し、そのモデルで予測を行うことを可能にして、ML をより多くの人が利用できるようにします。 この一連のラボでは、さまざまなモデルタイプを試して、 優れたモデルを作成する方法を学習します。
クラウド アーキテクチャ: 設計、実装、管理 コースを修了して、スキルバッジを獲得しましょう。 Apache ウェブサーバーを使用した一般公開ウェブサイトのデプロイ、 起動スクリプトを使用した Compute Engine VM の構成、 Windows の踏み台インスタンスとファイアウォール ルールを使用したセキュアな RDP の構成、ビルドした Docker イメージの Kubernetes クラスタへのデプロイと更新、 CloudSQL インスタンスの作成と MySQL データベースのインポートといったスキルを実証できます。 このスキルバッジは、 Google Cloud Certified Professional Cloud Architect 認定資格試験に出題されるトピックを理解するのに 役立つリソースです。
ネットワーキングはクラウド コンピューティングにおける主要なテーマです。Google Cloud の基盤となる 構造であり、すべてのリソースとサービスを 相互に接続するものです。このコースでは、Google Cloud の基本的なネットワーキング サービスについて学び、 優れたネットワークを開発するための専用ツールを使用して実践演習を 行います。VPC についての詳細な学習から、エンタープライズ クラスのロードバランサの作成まで、 「Google Cloud ネットワークにおけるデプロイの自動化とトラフィックの管理」では、 堅牢なネットワークを今すぐ構築するために必要となる実践的な経験を積むことができます。
セキュリティは、Google Cloud のサービスにおける妥協のない機能であり、これを念頭に、 プロジェクトをまたいで安全性を確保し ID を保護するための専用ツールが 開発されています。この入門コースでは、 ユーザー アカウントと仮想マシン アカウントの管理における主要機能である Google Cloud の Identity and Access Management(IAM)サービス の実践演習を行います。VPC と VPN のプロビジョニングを通してネットワーク セキュリティを実際に体験し、セキュリティ 脅威とデータ損失防止に使用できるツールについて学びます。
Kubernetes は最も人気のあるコンテナ オーケストレーション システムであり、Google Kubernetes Engine は特に Google Cloud でマネージド Kubernetes Deployment をサポートするよう 設計されています。この上級レベルのコースでは、 Docker イメージとコンテナを構成し、本格的な Kubernetes Engine アプリケーションをデプロイする実践演習を行います。 また、コンテナ オーケストレーションを独自のワークフローに統合するために必要な 実践的なスキルを学びます。 ハンズオン チャレンジラボを受講して、 スキルを証明し、知識を確認することもできます。このコースの修了後、 Google Cloud での Kubernetes アプリケーションのデプロイコースの 最後にあるチャレンジラボを追加で完了して、Google Cloud の限定デジタルバッジを獲得しましょう。
この入門コースは、他のコースとは異なるものです。 これらのラボは、Google Cloud Certified Associate Cloud Engineer 認定資格試験に出題されるトピックやサービスについて、IT プロフェッショナルがハンズオンで演習するために作成されました。IAM からネットワーキング、 Kubernetes Engine のデプロイまでを 網羅する個別のラボで構成されており、Goodle Cloud の知識が試されます。これらのラボによる演習で 知識やスキルや能力を向上させることは可能ですが、 試験ガイドやその他の対策資料も参照することをおすすめします。
「Google Cloud でのウェブサイトの構築」スキルバッジ コースを修了して入門レベルの スキルバッジを獲得しましょう。 このコースは「Get Cooking in Cloud」シリーズに基づいており、次の内容を扱います。 Cloud Run でウェブサイトをデプロイするCompute Engine でウェブアプリをホストするGoogle Kubernetes Engine でウェブサイトを作成、デプロイ、 スケーリングするCloud Build を使用してモノリシック アプリケーションからマイクロサービス アーキテクチャに移行する
このクエストでは、ウェブサイトが利用可能でスケーラブルであることを確認するために使用できる 4 つの Google Cloud ウェブサイト アーキテクチャについて学習します。 ハンズオンラボでスキルや知識を試したいですか?Build a Website on Google Cloud クエストの最後にあるチャレンジラボに登録し、完了した際には Google Cloud 限定デジタルバッジを獲得できます。このクエストは、Get Cooking in Cloud のビデオシリーズに基づいています。
Cloud Logging is a fully managed service that performs at scale. It can ingest application and system log data from thousands of VMs and, even better, analyze all that log data in real time. In this fundamental-level Quest, you learn how to store, search, analyze, monitor, and alert on log data and events from Google Cloud. The labs in the Quest give you hands-on practice using Cloud Logging to maximize your learning experience and provide insight on how you can use Cloud Logging to your own Google Cloud environment.
この基礎レベルの クエスト は他の Qwiklabs 製品の中でもユニークです。これらのラボは、Google Cloud Certified Professional Cloud Architect 認定資格試験に出題されるトピックやサービスについて、 IT プロフェッショナルがハンズオンで演習するために作成されました。 IAM からネットワーキング、Kubernetes engine のデプロイまで、Goodle Cloud の知識が試される特定のラボで構成されています。これらのラボでの演習は スキルや能力の向上に役立ちますが、試験ガイドやその他の対策資料も参照することをお勧めします。
Earn a skill badge by completing the Build Interactive Apps with Google Assistant quest, where you will learn how to build Google Assistant applications, including how to: create an Actions project, integrate Dialogflow with an Actions project, test your application with Actions simulator, build an Assistant application with flash cards template, integrate customer MP3 files with your Assistant application, add Cloud Translation API to your Assistant application, and use APIs and integrate them into your applications. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete the skill badge quest, and final assessment challenge lab, to receive a digital badge that you can share with your network.
「Google Cloud での ML の API の使用 」コースを修了して、上級スキルバッジを獲得しましょう。このコースでは、ML と AI テクノロジーを活用する 3 つの API(Cloud Vision API、Cloud Translation API、Cloud Natural Language API) の基本機能について学習します。
「BigQuery のデータから分析情報を引き出す」の入門スキルバッジを獲得すると、 SQL クエリの作成、一般公開テーブルに対するクエリの実行、BigQuery へのサンプルデータの読み込み、BigQuery でのクエリ バリデータを使用した一般的な構文エラーのトラブルシューティング、 BigQuery データへの接続による Looker Studio でのレポート作成といったスキルを実証できます。
In this series of labs you will learn how to use BigQuery to analyze NCAA basketball data with SQL. Build a Machine Learning Model to predict the outcomes of NCAA March Madness basketball tournament games.
機械学習はもっとも迅速に成長しているテクノロジーの分野です。Google Cloud Platformは、その成長に一役かっています。APIのホストを使うことにより、GCPにはツールがあります。この上級レベルのクエストでは、「Implementing an AI Chatbot with Dialogflow」や「Detect Labels, Faces, and Landmarks in Images with the Cloud Vision API」と同様に機械学習APIについてハンズオンで演習ができます。
Want to scale your data analysis efforts without managing database hardware? Learn the best practices for querying and getting insights from your data warehouse with this interactive series of BigQuery labs. BigQuery is Google's fully managed, NoOps, low cost analytics database. With BigQuery you can query terabytes and terabytes of data without having any infrastructure to manage or needing a database administrator. BigQuery uses SQL and can take advantage of the pay-as-you-go model. BigQuery allows you to focus on analyzing data to find meaningful insights.
Google Cloud でのクラウド セキュリティの基礎の実践 スキルバッジを獲得できる中級コースを修了すると、 Identity and Access Management(IAM)でのロールの作成と割り当て、 サービス アカウントの作成と管理、Virtual Private Cloud(VPC)ネットワーク全体でのプライベート接続の有効化、 Identity-Aware Proxy を使用したアプリケーション アクセスの制限、Cloud Key Management Service(KMS)を使用した鍵と暗号化されたデータの管理、 限定公開 Kubernetes クラスタの作成に関するスキルを実証できます。
この入門レベルのコースでは、アプリケーション開発者を対象に、Google Cloud のエコシステムを使用して安全、スケーラブル、インテリジェントなクラウドネイティブ アプリケーションを構築する方法を説明 します。インフラストラクチャの設定を行わずにアプリケーションの開発やスケーリングを行う方法、 データ分析を実施する方法、データから分析情報を得る方法、トレーニング済み ML の API を使って開発し、ML のエキスパートでなくても ML を活用する方法を学びます。 また、さまざまな Google サービスや API とのシームレスな統合を利用して、 インテリジェントなアプリを作成します。
安全な Google Cloud ネットワークの構築コースを修了してスキルバッジを獲得しましょう。このコースでは、Google Cloud でアプリケーションを ビルド、スケール、保護するための複数のネットワーク関連リソースについて学習します。
「Google Cloud ネットワークの構築」コースを修了してスキルバッジを獲得しましょう。このコースでは、 アプリケーションをデプロイしてモニタリングするための複数の方法について学びます。具体的には、IAM ロールの確認とプロジェクト アクセスの追加 / 削除、 VPC ネットワークの作成、Compute Engine VM のデプロイとモニタリング、 SQL クエリの記述、Compute Engine での VM のデプロイとモニタリング、Kubernetes を使用した複数のデプロイ アプローチによるアプリケーションのデプロイなどです。
「Google Cloud におけるアプリ開発環境の設定」コースを完了すると、スキルバッジを獲得できます。このコースでは、 Cloud Storage、Identity and Access Management、Cloud Functions、Pub/Sub のテクノロジーの基本機能を使用して、ストレージ中心のクラウド インフラストラクチャを構築し接続する方法を学びます。
With Google Assistant part of over a billion consumer devices, this quest teaches you how to build practical Google Assistant applications integrated with Google Cloud services via APIs. Example apps will use the Dialogflow conversational suite and the Actions and Cloud Functions frameworks. You will build 5 different applications that explore useful and fun tools you can extend on your own. No hardware required! These labs use the cloud-based Google Assistant simulator environment for developing and testing, but if you do have your own device, such as a Google Home or a Google Hub, additional instructions are provided on how to deploy your apps to your own hardware.
これは、Google Cloud Essentials よりもレベルの高い内容の練習機会を求めている初心者のクラウド デベロッパーに おすすめのコースです。Cloud Storage だけでなく、 Monitoring や Cloud Run functions などの主要なアプリケーション サービスに関連するラボを通して、 実践的な経験を積むことが可能です。また、 あらゆる Google Cloud イニシアチブに応用できる有益なスキルを身に付けることができます。
この入門レベルのコースでは、 Google Cloud の基本的なツールやサービスに関する実践演習を行います。オプションで動画も提供されており、 ラボで取り上げられたコンセプトに関するさらなるコンテキストの確認や、復習に利用できます。「Google Cloud の基礎」は、Google Cloud の学習者に最初に推奨されるコースです。 クラウドの予備知識がほとんどなくても、 最初の Google Cloud プロジェクトに応用できる実践的な経験を積むことができます。Cloud Shell コマンドの記述、 初めての仮想マシンのデプロイ、Kubernetes Engine 上でのアプリケーションの実行や ロード バランシングなど、「Google Cloud の基礎」では、Google Cloud の 基本的な機能について学ぶことができます。
ML は、IT 分野で最も急速に成長している技術の一つであり、Google Cloud Platform はその発展に大きく貢献してきました。 Google Cloud では多数の API により、ほぼすべての ML ジョブに対応するツールを提供しています。 この入門コースでは、ラボを通じて言語処理に活用できる ML の実践演習を行います。 これにより、テキストからのエンティティの抽出、 感情分析と構文解析、音声文字変換のための Speech-to-Text API の使用方法を学ぶことができます。
ビッグデータ、ML、AI は今日のコンピュータ業界ではホットなトピックですが、 これらの分野は非常に専門性が高く、 入門レベルの教材を見つけるのは困難です。幸いなことに、Google Cloud はこうした分野でユーザー フレンドリーなサービスを提供しており、 この入門レベルのコースを通じて、BigQuery、Cloud Speech API、 Video Intelligence などのツールを使い始めるための第一歩を踏み出せます。
Google Cloud での Kubernetes アプリケーションのデプロイ コースの中級スキルバッジを獲得できるアクティビティを修了すると、 Docker コンテナ イメージの構成とビルド、Google Kubernetes Engine(GKE)クラスタの作成と管理、kubectl を活用した効率的な クラスタ管理、堅牢な継続的デリバリー(CD)による Kubernetes アプリケーションのデプロイ手法といったスキルを実証できます。
「Google Cloud の ML API 用にデータを準備」コースの入門スキルバッジを獲得できるアクティビティを修了すると、 Dataprep by Trifacta を使用したデータのクリーニング、Dataflow でのデータ パイプラインの実行、Dataproc でのクラスタの作成と Apache Spark ジョブの実行、 Cloud Natural Language API、Google Cloud Speech-to-Text API、Video Intelligence API などの ML API の呼び出しに関するスキルを証明できます。
「Compute Engine での Cloud Load Balancing の実装」入門コースを修了してスキルバッジを獲得すると、次のスキルを実証できます: Compute Engine における仮想マシンの作成とデプロイ、 ネットワーク ロードバランサとアプリケーション ロードバランサの構成。