Abulhaj Yahya
メンバー加入日: 2022
メンバー加入日: 2022
Vertex AI での ML ソリューションの構築とデプロイ コースを修了して、 中級スキルバッジを獲得しましょう。このコースでは、Google Cloud の Vertex AI プラットフォーム、AutoML、カスタム トレーニング サービスを使用して、 ML モデルのトレーニング、評価、チューニング、説明、デプロイを行う方法を学びます。 このスキルバッジ コースは、データ サイエンティストと ML エンジニアのプロフェッショナルを 対象としています。 スキルバッジは、Google Cloud のプロダクトとサービスの習熟度を示す Google Cloud 発行の限定デジタルバッジで、 インタラクティブなハンズオン環境での知識の応用力を証明するものです。このスキルバッジと 最終評価チャレンジラボを完了し、デジタルバッジを獲得して ネットワークで共有しましょう。
This course describes different types of computer vision use cases and then highlights different machine learning strategies for solving these use cases. The strategies vary from experimenting with pre-built ML models through pre-built ML APIs and AutoML Vision to building custom image classifiers using linear models, deep neural network (DNN) models or convolutional neural network (CNN) models. The course shows how to improve a model's accuracy with augmentation, feature extraction, and fine-tuning hyperparameters while trying to avoid overfitting the data. The course also looks at practical issues that arise, for example, when one doesn't have enough data and how to incorporate the latest research findings into different models. Learners will get hands-on practice building and optimizing their own image classification models on a variety of public datasets in the labs they will work on.
Google スプレッドシートの中級コースは、初級のコースで説明されたコンセプトを元に進められます。 このコースでは、Google スプレッドシートでテーマを適用してカスタマイズする方法を学習し、条件付き書式のオプションを確認します。 Google スプレッドシートの高度な数式と関数をいくつか学習します。関数を使用した数式を作成する方法を確認し、さらに Google スプレッドシート内のデータを参照して検証する方法を学びます。 スプレッドシートには、何百万という数、数式、テキストを入力しておくことができます。このようなデータは要約や可視化を行わないと、十全に活用することが難しい場合があります。このコースでは、グラフやピボット テーブルなど、Google スプレッドシートのデータ可視化オプションを確認します。 Google フォームは、データを収集して迅速なデータ分析を可能にするオンライン アンケートです。フォームで収集したデータをスプレッドシートに接続する作業や、既存のスプレッドシートからフォームを作成する作業を通じて、フォームとスプレッドシートがどのように連携するのかを確認します。
このコースでは、Google Workspace に付属する Google のチャット ソフトウェアである Google Chat について紹介します。 Google Chat で個人やグループにメッセージを送信する方法を説明します。カスタマイズ オプションやコラボレーション機能、そして Google Chat が他の Google Workspace 製品とどのように連携するかについても解説します。 Google Chat のスペースの作成、管理、検索、およびスペースへの参加の方法を確認しながら、スペースの使用方法を詳しく見ていきます。また、スペースとグループ チャットの用途の違いについても説明します。 Google Chat アプリについても紹介し、Google Chat 内でのアプリの検索と使用の方法について解説します。 コースの動画と別に、受講者はハンズオン アクティビティを行い、学んだことを練習します。アクティビティでは 1 人か 2 人の同僚に参加してもらい、Google Chat でやり取りすることを検討してください。
このコースでは、Google Workspace に付属する Google のビデオ会議ソフトウェアである Google Meet について紹介します。 Google Meet を使ってビデオ会議を作成し、管理する方法について説明します。Google Meet を開き、ビデオ会議にユーザーを追加するさまざまな方法について確認します。カレンダーの予定や会議リンクなど、さまざまなソースから会議に参加する方法についても説明します。 Google Meet を使用して、チームがどこにいても、コミュニケーション、意見の交換、リソースの共有をより適切に行う方法について説明します。ニーズに合わせて Google Meet 環境をカスタマイズする方法や、ビデオ会議中にチャット メッセージを効率的に使う方法について説明します。また、カレンダーの招待状や添付ファイルを使うなど、リソースを共有するさまざまな方法について確認します。 Google Meet の主催者用ボタンを使って参加者を管理し、インタラクティブな管理機能を利用する方法について説明します。ビデオ会議の録画やライブ ストリーミングを行う方法についても説明します。
Google スライドを使用すると、営業用、プロジェクト用、トレーニング モジュール用にプロフェッショナルなプレゼンテーションを作成して提示できます。 Google スライドのプレゼンテーションは、クラウドに安全に保存されます。プレゼンテーションはウェブブラウザで直接作成でき、特別なソフトウェアは必要ありません。 さらに、複数のユーザーが同時に作業することができ、他のユーザーの変更内容をリアルタイムで見ることもできます。変更はすべて自動的に保存されます。このコースでは、Google スライドを開いて空のプレゼンテーションを作成する方法と、テンプレートからプレゼンテーションを作成する方法を学習します。プレゼンテーションのテーマやレイアウトのオプション、コンテンツとスピーカーノートの追加や書式設定の方法について学びます。表、画像、グラフなどを追加してスライドを充実させる方法を学習します。また、スライドの切り替え効果やオブジェクトのアニメーションなどの視覚効果をプレゼンテーションで使用する方法についても学びます。スライドを整理する方法について説明し、スライドの複製と順序付け、既存のスライドのインポート、スライドのコピー、スライドの非表示などのオプションを確認します。プレゼンテーションを他のユーザーと共有する方法のほか、共同編集者の権限、変更履歴、バージョン管理についても学習します。Google スライドには、チームの共同編集を容易にするさまざまな機能が用意されています。チームでの共同編集にコメントとアクション アイテムを活用する方法を学習します。 スライドを提示することが最終的な目標であるため、スライドを他の人にプレゼンテーションする方法や、利用可能なプレゼンテーション ツールについて学習します。
このコースでは、Google スプレッドシートを紹介します。Google スプレッドシートはクラウドベースのスプレッドシート ソフトウェアで、 Google Workspace に含まれています。 Google スプレッドシートでは、ウェブブラウザで直接スプレッドシートを作成して編集できます。特別なソフトウェアは必要ありません。 複数のユーザーが同時に編集することも、他のユーザーの変更内容をリアルタイムで見ることもできます。また、変更はすべて自動的に保存されます。 このコースでは、Google スプレッドシートを開いて空のスプレッドシートを作成する方法、テンプレートからスプレッドシートを作成する方法を学習します。また、Google スプレッドシートを使用してデータの追加、インポート、並べ替え、フィルタリング、書式設定を行い、さまざまな種類のファイルで作業する方法も学習します。 数式と関数を使用すると、すばやく計算を行ってデータをより有効に活用できます。このコースでは、基本的な数式を作成する方法、関数を使用する方法、データを参照する方法について見ていきます。スプレッドシートにグラフを追加する方法も学習します。 Google スプレッドシートは簡単に共有できます。このコースでは、他のユーザーとスプレッドシートを共有するさまざまな方法を見ていきます。また、変更を追跡し、Google スプレッドシートのバージョンを管理する方法についても説明します。 Google Workspace を使用すれば、チーム、クライアント、他のユーザーがどこにいても、簡単に共同編集を行うことができます。Google スプレッドシートで利用できる共同編集オプションについてもいくつか紹介します。これらのオプションには、コメント、アクション アイテム、通知などがあります。
Google ドキュメントを使用すると、ドキュメントがクラウドに保存され、任意のパソコンまたはデバイスからアクセスできます。ウェブブラウザでドキュメントを作成および編集できます。特別なソフトウェアは必要ありません。さらに、複数のユーザーが同時に作業することができ、ユーザーが変更を行ったときにその変更を確認することも可能です。各変更は自動的に保存されます。 このコースでは、Google ドキュメントの開き方、新しいドキュメントの作成と書式設定の方法、新しいドキュメントへのテンプレートの適用方法について説明します。 目次、ヘッダーとフッター、表、図、画像などを使用してドキュメントの質を高める方法を説明します。 ドキュメントを他のユーザーと共有する方法について説明します。共有オプションのほか、共同編集者のロールと権限を確認します。ドキュメントのバージョンを管理する方法について説明します。 Google ドキュメントを使用すると、同じドキュメントで他のユーザーとリアルタイムで共同作業できます。ドキュメント内のコメントとアクション アイテムを作成、管理する方法について説明します。 複数の Google ドキュメント ツールを確認します。自分のスタイルに合わせて環境設定を行う方法を理解し、Google Explore などのツールを使用してコンテンツの価値を高める方法を検討します。
Google ドライブは Google のクラウドベースのファイル ストレージ サービスです。Google ドライブでは、すべての作業を 1 か所にまとめ、追加のソフトウェアを必要とせずにさまざまなファイル形式を表示でき、どのデバイスからでもファイルにアクセスできます。 このコースでは、Google ドライブの操作方法を学びます。ファイルやフォルダをアップロードする方法や、ファイルの種類に関係なく作業する方法のほか、Google ドライブでファイルを簡単に表示、配置、整理、変更、削除する方法についても学びます。 Google ドライブには共有ドライブが含まれています。共有ドライブを使用して、チームでファイルを保存したり、検索したり、ファイルにアクセスしたりできます。新しい共有ドライブの作成、メンバーの追加と管理、共有ドライブのコンテンツの管理などの方法を学びます。 Google Workspace とはつまり、コラボレーションと共有機能そのものです。Google ドライブで利用できる共有オプションを確認し、さまざまなユーザー ロールや割り当て可能な権限について学びます。 また、テンプレートを使用して一貫性を確保し、時間を節約する方法についても確認します。 Google ドライブには、さまざまなツールやオプションが用意されています。このコースでは、それらのオプションの中から、オフラインで作業する方法、ドライブ ファイル ストリームを使用する方法、Google Workspace Marketplace からアプリをインストールする方法について説明します。
Google カレンダーを使用すると、会議や予定のスケジュールを設定することや、今後のアクティビティに関するリマインダーを受信することが簡単にでき、今後の予定を常に把握することができます。Google カレンダーはチーム向けに設計されているため、スケジュールを他のユーザーと共有することや、複数の共用カレンダーを作成してチームで使用することが簡単にできます。 このコースでは、Google カレンダーの予定を作成して管理する方法(既存の予定の更新、予定の削除と復元、カレンダーの検索)を学びます。 リマインダー、タスク、予約枠など、さまざまな種類の予定をどのようなときに使うのかを理解できるようになります。 自分の作業のやり方に合わせてカスタマイズ可能な Google カレンダーの設定について詳しく見ていきます。 追加のカレンダーを作成する方法、他のユーザーとカレンダーを共有する方法、組織内の他のカレンダーにアクセスする方法も学びます。
Gmail は Google のクラウドベースのメールサービスです。ウェブブラウザだけであらゆるパソコンやデバイスからメッセージにアクセスできます。 このコースでは、メッセージの作成、送信、返信方法について学習します。また、Gmail メッセージに適用できるいくつかの一般的な操作についても説明し、Gmail のラベルを使用してメールを整理する方法を学習します。 一般的な Gmail の設定と機能について説明します。たとえば、個人の連絡先やグループを管理する方法、Gmail の受信トレイを自分の作業の進め方に合わせてカスタマイズする方法、独自のメール署名とテンプレートを作成する方法について学習します。 Google は検索で有名です。Gmail にも強力な検索機能とフィルタ機能が含まれています。Gmail の高度な検索機能を使用して、メッセージを自動的にフィルタする方法を学習します。
ML は、IT 分野で最も急速に成長している技術の一つであり、Google Cloud Platform はその発展に大きく貢献してきました。 Google Cloud では多数の API により、ほぼすべての ML ジョブに対応するツールを提供しています。 この入門コースでは、ラボを通じて言語処理に活用できる ML の実践演習を行います。 これにより、テキストからのエンティティの抽出、 感情分析と構文解析、音声文字変換のための Speech-to-Text API の使用方法を学ぶことができます。
このコースでは、予測 AI と生成 AI の両方のプロジェクトを構築できる、Google Cloud の AI および機械学習(ML)サービスについて紹介します。AI の基盤、開発、ソリューションを含むデータから AI へのライフサイクル全体で利用可能なテクノロジー、プロダクト、ツールについて説明するとともに、魅力的な学習体験と実践的なハンズオン演習を通じて、データ サイエンティスト、AI 開発者、ML エンジニアの方々がスキルや知識を強化できるようサポートすることを目指しています。
Enterprises of all sizes have trouble making their information readily accessible to employees and customers alike. Internal documentation is frequently scattered across wikis, file shares, and databases. Similarly, consumer-facing sites often offer a vast selection of products, services, and information, but customers are frustrated by ineffective site search and navigation capabilities. This course teaches you to use Generative AI App Builder to integrate enterprise-grade generative AI search.
Earn a skill badge by completing the Create Conversational AI Agents with Dialogflow CX quest, where you will learn how to create a conversational virtual agent, including how to: define intents and entities, use versions and environments, create conversational branching, and use IVR features. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete this skill badge quest, and the final assessment challenge lab, to receive a skill badge that you can share with your network.
企業における AI と ML の利用が拡大し続けるなか、責任を持ってそれを構築することの重要性も増しています。多くの企業にとっての課題は、責任ある AI と口で言うのは簡単でも、それを実践するのは難しいということです。このコースは、責任ある AI を組織で運用化する方法を学びたい方に最適です。 このコースでは、Google Cloud が責任ある AI を現在どのように運用化しているかを、ベスト プラクティスや教訓と併せて学び、責任ある AI に対する独自のアプローチを構築するためのフレームワークとして活用できるようにします。
「Generative AI Explorer - Vertex AI」コースには、 Google Cloud での生成 AI の使用方法に関する複数のラボが含まれます。ラボでは、Vertex AI PaLM API ファミリーの text-bison、chat-bison、 textembedding-gecko などのモデルの使用方法を確認し、プロンプト設計やベスト プラクティス、さらに Vertex AI を活用した アイディエーション、テキスト分類、テキスト抽出、テキスト要約について 学びます。また、 Vertex AI カスタム トレーニングによって基盤モデルをチューニングし、Vertex AI エンドポイントにデプロイする方法も学びます。
このコースでは、Professional Data Engineer(PDE)認定資格試験に向けた学習計画を作成できます。学習者は、試験の範囲を把握できます。また、試験への準備状況を把握して、個々の学習計画を作成します。
この初級コースでは、Google Cloud のデータ分析ワークフローについてと、データを探索、分析、可視化し、得られた情報をステークホルダーと共有するために使用できるツールについて学びます。ケーススタディを取り上げながら、ハンズオンラボ、講義、理解度チェック、デモを通じて、元データセットをクリーンなデータに、さらには効果的な可視化やダッシュボードに生まれ変わらせる方法を示します。このコースは、Google Cloud で成果を上げる方法を知りたいと思っているデータ実務担当者にも、さらなるキャリアアップを目指している方にも、専門知識を深める入口として最適な内容になっています。データ分析業務を実際に行っている、あるいはデータ分析を利用している大多数の人に有益です。
「BigQuery でデータ ウェアハウスを構築する」スキルバッジを獲得できる中級コースを修了すると、 データの結合による新しいテーブルの作成、結合のトラブルシューティング、UNION を使用したデータの連結、日付パーティション分割テーブルの作成、 BigQuery での JSON、配列、構造体の操作に関するスキルを証明できます。
「Google Cloud の ML API 用にデータを準備」コースの入門スキルバッジを獲得できるアクティビティを修了すると、 Dataprep by Trifacta を使用したデータのクリーニング、Dataflow でのデータ パイプラインの実行、Dataproc でのクラスタの作成と Apache Spark ジョブの実行、 Cloud Natural Language API、Google Cloud Speech-to-Text API、Video Intelligence API などの ML API の呼び出しに関するスキルを証明できます。
BigQuery ML を使用した予測モデリング向けのデータ エンジニアリング」のスキルバッジを獲得できる中級コースを修了すると、 Dataprep by Trifacta を使用した BigQuery へのデータ変換パイプラインの構築、 Cloud Storage、Dataflow、BigQuery を使用した抽出、変換、読み込み(ETL)ワークフローの構築、 BigQuery ML を使用した ML モデルの構築に関するスキルを実証できます。
This advanced-level quest is unique amongst the other catalog offerings. The labs have been curated to give IT professionals hands-on practice with topics and services that appear in the Google Cloud Certified Professional Data Engineer Certification. From Big Query, to Dataprep, to Cloud Composer, this quest is composed of specific labs that will put your Google Cloud data engineering knowledge to the test. Be aware that while practice with these labs will increase your skills and abilities, you will need other preparation, too. The exam is quite challenging and external studying, experience, and/or background in cloud data engineering is recommended. Looking for a hands on challenge lab to demonstrate your skills and validate your knowledge? On completing this quest, enroll in and finish the additional challenge lab at the end of the Engineer Data in the Google Cloud to receive an exclusive Google Cloud digital badge.
In this advanced-level quest, you will learn how to harness serious Google Cloud computing power to run big data and machine learning jobs. The hands-on labs will give you use cases, and you will be tasked with implementing big data and machine learning practices utilized by Google’s very own Solutions Architecture team. From running Big Query analytics on tens of thousands of basketball games, to training TensorFlow image classifiers, you will quickly see why Google Cloud is the go-to platform for running big data and machine learning jobs.
In this course you will learn how you to harness serious Google Cloud power and infrastructure. The hands-on labs will give you use cases and you will be tasked with implementing scaling practices utilized by Google’s very own Solutions Architecture team. From developing enterprise grade load balancing and autoscaling, to building continuous delivery pipelines, Google Cloud Solutions I: Scaling your Infrastructure will teach you best practices for taking your Google Cloud projects to the next level.
「Sensitive Data Protection を使ってみる」コースを修了して初級 スキルバッジを獲得すると、Sensitive Data Protection サービス (Cloud Data Loss Prevention API を含む)を使用して、Google Cloud 上の機密データを検査、秘匿化、匿名化するためのスキルを実証できます。
In this course, you apply your knowledge of classification models and embeddings to build a ML pipeline that functions as a recommendation engine. This is the fifth and final course of the Advanced Machine Learning on Google Cloud series.
このコースでは、本番環境で高パフォーマンスな ML システムを構築するためのコンポーネントとベスト プラクティスについて学習します。また、ML システムを構築するうえで最も一般的な考慮事項を紹介します。これには、静的トレーニング、動的トレーニング、静的な推論、動的な推論、分散型 TensorFlow、TPU などが含まれます。このコースでは、優れた予測能力にとどまらない、優れた ML システムの特性を探索することに焦点を当てています。
このコースでは、Google Cloud 上で本番環境の ML システムをデプロイ、評価、モニタリング、運用するための MLOps ツールとベスト プラクティスについて説明します。MLOps は、本番環境 ML システムのデプロイ、テスト、モニタリング、自動化に重点を置いた規範です。機械学習エンジニアリングの担当者は、ツールを活用して、デプロイしたモデルの継続的な改善と評価を行います。また、データ サイエンティストと協力して、あるいは自らがデータ サイエンティストとして、最も効果的なモデルを迅速かつ正確にデプロイできるようモデルを開発します。
このコースでは、ML ワークフローに対する実践的なアプローチを取り上げます。具体的には、いくつかの ML のビジネス要件とユースケースに取り組む ML チームをケーススタディ形式で紹介します。このチームは、データ マネジメントとガバナンスに必要なツールを理解し、データの前処理に最適なアプローチを検討する必要があります。 2 つのユースケースに対して ML モデルを構築するための 3 つのオプションがチームに提示されます。このコースでは、チームの目標を達成するために、AutoML、BigQuery ML、カスタム トレーニングを使用する理由について説明します。
このコースでは、Vertex AI Feature Store を使用するメリット、ML モデルの精度を向上させる方法、最も有効な特徴を抽出できるデータ列の見極め方について説明します。また、BigQuery ML、Keras、TensorFlow を使用した特徴量エンジニアリングに関するコンテンツとラボも用意されています。
このコースでは、TensorFlow と Keras を使用した ML モデルの構築、ML モデルの精度の向上、スケーリングに対応した ML モデルの作成について取り上げます。
Welcome to "CCAI Operations and Implementation", the fourth course in the "Customer Experiences with Contact Center AI" series. In this course, learn some best practices for integrating conversational solutions with your existing contact center software, establishing a framework for human agent assistance, and implementing solutions securely and at scale. In this course, you'll be introduced to Agent Assist and the technology it uses so you can delight your customers with the efficiencies and accuracy of services provided when customers require human agents, connectivity protocols, APIs, and platforms which you can use to create an integration between your virtual agent and the services already established for your business, Dialogflow's Environment Management tool for deployment of different versions of your virtual agent for various purposes, compliance measures and regulations you should be aware of when bringing your virtual agent to production, and you'll be given tips from virtua…
Welcome to "Virtual Agent Development in Dialogflow CX for Software Devs", the third course in the "Customer Experiences with Contact Center AI" series. In this course, learn how to develop more customized customer conversational solutions using Contact Center Artificial Intelligence (CCAI). In this course, you'll be introduced to more advanced and customized handling for virtual agent conversations that need to look up and convey dynamic data, and methods available to you for testing your virtual agent and logs which can be useful for understanding issues that arise. This is an intermediate course, intended for learners with the following type of role: Software developers: Codes computer software in a programming language (e.g., C++, Python, Javascript) and often using an SDK/API.
Welcome to "Virtual Agent Development in Dialogflow CX for Citizen Devs", the second course in the "Customer Experiences with Contact Center AI" series. In this course, learn how to develop customer conversational solutions using Contact Center Artificial Intelligence (CCAI). In this course, you'll be introduced to adding voice (telephony) as a communication channel to your virtual agent conversations using Dialogflow CX.
Welcome to "CCAI Virtual Agent Development in Dialogflow ES for Software Developers", the third course in the "Customer Experiences with Contact Center AI" series. In this course, learn to use additional features of Dialogflow ES for your virtual agent, create a Firestore instance to store customer data, and implement cloud functions that access the data. With the ability to read and write customer data, learner’s virtual agents are conversationally dynamic and able to defer contact center volume from human agents. You'll be introduced to methods for testing your virtual agent and logs which can be useful for understanding issues that arise. Lastly, learn about connectivity protocols, APIs, and platforms for integrating your virtual agent with services already established for your business.
Welcome to "Virtual Agent Development in Dialogflow ES for Citizen Devs", the second course in the "Customer Experiences with Contact Center AI" series. In this course, learn how to develop customer conversational solutions using Contact Center Artificial Intelligence (CCAI). You will use Dialogflow ES to create virtual agents and test them using the Dialogflow ES simulator. This course also provides best practices on developing virtual agents. You will also be introduced to adding voice (telephony) as a communication channel to your virtual agent conversations. Through a combination of presentations, demos, and hands-on labs, participants learn how to create virtual agents. This is an intermediate course, intended for learners with the following types of roles: Conversational designers: Designs the user experience of a virtual assistant. Translates the brand's business requirements into natural dialog flows. Citizen developers: Creates new business applications fo…
Welcome to "CCAI Conversational Design Fundamentals", the first course in the "Customer Experiences with Contact Center AI" series. In this course, learn how to design customer conversational solutions using Contact Center Artificial Intelligence (CCAI). You will be introduced to CCAI and its three pillars (Dialogflow, Agent Assist, and Insights), and the concepts behind conversational experiences and how the study of them influences the design of your virtual agent. After taking this course you will be prepared to take your virtual agent design to the next level of intelligent conversation.
このコースを受講すると、スケーラブルでパフォーマンスの高い LookML(Looker モデリング言語)モデルを開発し、ビジネス ユーザーの疑問解決に役立つ標準化されたすぐに使えるデータを提供できるようになります。このコースの修了時には、組織の Looker インスタンスでデータをキュレートして管理するための LookML モデルの構築と維持が可能になります。
このコースでは、これまで主に SQL のデベロッパーやアナリストが行っていたようなデータの探索や分析を Looker で実施する方法について学びます。このコースを修了すると、Looker の最新の分析プラットフォームを活用して、組織の Looker インスタンスにおける関連性の高いコンテンツの検索と探索、データに関する問い合わせ、必要に応じた新しい指標の作成、データドリブンな意思決定を促進するためのビジュアリゼーションとダッシュボードの作成や共有を行えるようになります。
このコースでは、ML について定義し、ビジネスで ML をどのように活用できるのかを学習します。機械学習を使用したデモをいくつか確認し、機械学習の主な用語(インスタンス、特徴、ラベルなど)について学習します。インタラクティブなラボでは、事前トレーニング済みの ML API の呼び出しを実行するほか、BigQuery ML で SQL のみを使用して独自の ML モデルを構築します。
This learning experience guides you through the process of utilizing various data sources and multiple Google Cloud products (including BigQuery and Google Sheets using Connected Sheets) to analyze, visualize, and interpret data to answer specific questions and share insights with key decision makers.
このコースシリーズの 3 番目のコースは、「Achieving Advanced Insights with BigQuery」です。ここでは、高度な関数と、複雑なクエリを管理可能なステップに分割する方法を学びながら、SQL に関する知識を深めます。 BigQuery の内部アーキテクチャ(列ベースのシャーディング ストレージ)についてや、ARRAY と STRUCT を使用した、ネストされたフィールドと繰り返しフィールドなどの高度な SQL トピックについて説明します。最後に、クエリのパフォーマンスを最適化する方法と、承認済みビューを使用してデータを保護する方法について説明します。 このコースを修了したら、「Applying Machine Learning to Your Data with Google」コースに登録してください。
これは「Data to Insights」コースシリーズの 2 つ目のコースです。ここでは、新しい外部データセットを BigQuery に取り込み、Looker Studio で可視化する方法について説明します。また、複数テーブルの JOIN と UNION など、中級者向けの SQL のコンセプトについても説明します。JOIN や UNION を使用すると、複数のデータソースのデータを分析できます。 注: すでに SQL に関する知識をお持ちの方も、BigQuery に固有の要素(クエリ キャッシュやテーブル ワイルドカードの処理など)について学ぶことができます。 このコースを修了したら、「Achieving Advanced Insights with BigQuery」コースに登録してください。
このコースでは、Google Cloud の上級ユーザーを対象に、 Terraform を使用してクラウド リソースを記述し、リリースする方法を説明します。 Terraform は、API を宣言的な構成ファイルにコード化するオープンソースのツールです。 構成ファイルは、チームメンバー間で共有したり、コードとして扱ったりできます。また、編集、レビュー、バージョン管理もできます。これらの ハンズオンラボでは、サンプル テンプレートを使用して、 シンプルなサーバーから、完全にロードバランスされたアプリケーションまで、さまざまな構成をリリースする方法を 学びます。
In this quest you will get hands-on experience writing infrastructure as code with Terraform.
これは、Google Cloud Essentials よりもレベルの高い内容の練習機会を求めている初心者のクラウド デベロッパーに おすすめのコースです。Cloud Storage だけでなく、 Monitoring や Cloud Run functions などの主要なアプリケーション サービスに関連するラボを通して、 実践的な経験を積むことが可能です。また、 あらゆる Google Cloud イニシアチブに応用できる有益なスキルを身に付けることができます。
Welcome to Cloud Composer, where we discuss how to orchestrate data lake workflows with Cloud Composer.
このコースでは、まず、データ品質を向上させる方法や探索的データ分析を行う方法など、データについての議論から始めます。Vertex AI AutoML について確認し、コードを一切記述せずに ML モデルを構築、トレーニング、デプロイする方法を説明します。また、BigQuery ML のメリットを確認します。その後、ML モデルを最適化する方法、一般化とサンプリングを活用してカスタム トレーニング向けに ML モデルの品質を評価する方法を説明します。
Welcome to Migrate Workflows, where we discuss how to migrate Spark and Hadoop tasks and workflows to Google Cloud.
Welcome to Intro to Data Lakes, where we discuss how to create a scalable and secure data lake on Google Cloud that allows enterprises to ingest, store, process, and analyze any type or volume of full fidelity data.
Google Cloud で機械学習を実装する際のベスト プラクティスには何があるでしょうか。Vertex AI とは何であり、このプラットフォームを使用してコードを 1 行も記述せずに AutoML 機械学習モデルを迅速に構築、トレーニング、デプロイするにはどうすればよいでしょうか。機械学習とはどのようなもので、どのような問題の解決に役立つのでしょうか。 Google では機械学習について独自の視点で考えています。マネージド データセット、特徴量ストア、そしてコードを 1 行も記述せずに迅速に機械学習モデルを構築、トレーニング、デプロイする手段を 1 つにまとめた統合プラットフォームを提供するとともに、データにラベル付けし、TensorFlow、SciKit Learn、Pytorch、R やその他のフレームワークを使用して Workbench ノートブックを作成できるようにすることが、Google の考える機械学習の在り方です。Google の Vertex AI プラットフォームでは、カスタムモデルをトレーニングしたり、コンポーネント パイプラインを構築したりすることもできます。さらに、オンライン予測とバッチ予測の両方を実施できます。このコースでは、候補となるユースケースを機械学習で学習できる形に変換する 5 つのフェーズについても説明し、これらのフェーズを省略しないことが重要である理由について論じます。最後に、機械学習によって増幅される可能性のあるバイアスの認識と、それを識別する方法について説明します。
データレイクとデータ ウェアハウスを使用する従来のアプローチは効果的ですが、特に大規模な企業環境においては欠点があります。このコースでは、データ レイクハウスのコンセプトと、データ レイクハウスの作成に使用する Google Cloud プロダクトについて説明します。レイクハウス アーキテクチャは、オープン スタンダードのデータソースを使用し、データレイクとデータ ウェアハウスの優れた機能を組み合わせて、両者の欠点の多くに対処します。
クラウド テクノロジーは組織に大きな価値をもたらします。クラウド テクノロジーの力をデータと組み合わせることで、その価値はさらに大きなものとなり、新しいカスタマー エクスペリエンスを提供できる可能性があります。「Google Cloud によるデータ トランスフォーメーションの探求」では、データが組織にもたらす価値と、Google Cloud でデータを有用かつアクセス可能なものにする方法を学習します。このコースは「クラウド デジタル リーダー」学習プログラムの一部で、個人が自分の役割において成長し、ビジネスの未来を構築することを目的としています。
このコースでは、データから AI へのライフサイクルをサポートする Google Cloud のビッグデータと ML のプロダクトやサービスを紹介します。また、Google Cloud で Vertex AI を使用してビッグデータ パイプラインと ML モデルを作成する際のプロセス、課題、メリットについて説明します。
このコースは、Dataflow を使用したサーバーレスのデータ処理に関する 3 コースシリーズのパート 1 です。この最初のコースでは、始めに Apache Beam とは何か、そして Dataflow とどのように関係しているかを復習します。次に、Apache Beam のビジョンと Beam Portability フレームワークの利点について説明します。Beam Portability フレームワークによって、デベロッパーが好みのプログラミング言語と実行バックエンドを使用できるビジョンが実現します。続いて、Dataflow によってどのように費用を節約しながらコンピューティングとストレージを分離できるか、そして識別ツール、アクセスツール、管理ツールがどのように Dataflow パイプラインと相互に機能するかを紹介します。最後に、Dataflow でそれぞれのユースケースに合った適切なセキュリティ モデルを実装する方法について学習します。
Google Cloud Application Programming Interfaces は、Google Cloud Services とプログラムでインタラクトするメカニズムです。このクエストは、GCP API のハンズオン演習を提供し、APIをブラウズして、実行するツールである Google の API Explorerを通して学習します。クラウドのストレージ間でのデータ移行の方法、コンピュートエンジンインスタンスのデプロイ、Dataprocクラスタの設定などを学ぶことにより、API が強力で、なぜGCPユーザが使用しているかを理解できます。
In this course, you learn how to secure your APIs. You explore the security concerns you will encounter for your APIs. You learn about OAuth, the primary authorization method for REST APIs. You will learn about JSON Web Tokens (JWTs) and federated security. You also learn about securing against malicious requests, safely sending requests across a public network, and how to secure your data for users of Apigee. Through a combination of lectures, hands-on labs, and supplemental materials, you will learn how to design, build, secure, deploy, and manage API solutions using Google Cloud's Apigee API Platform. This is the second course of the Developing APIs with Google Cloud's Apigee API Platform series. After completing this course, enroll in the API Development on Google Cloud's Apigee API Platform course.
DevOps によって 競争優位性を確保します。DevOps とは、ソフトウェア デリバリーを迅速化し、サービスの信頼性を向上させ、 ソフトウェアの開発と運用に影響を与えるステークホルダーの間で共有の当事者意識を高めることを目的とする、組織的、 文化的な考え方や取り組みです。このクエストでは、Google Cloud を使用して ソフトウェア デリバリーの速度、安定性、可用性、安全性を向上させる方法を学びます。 DevOps Research and Assessment チームが Google Cloud に加わりました。自社の DevOps チームの実力はいかがですか? 5 問の多肢選択式テストで評価してみましょう。
クラウド アーキテクチャ: 設計、実装、管理 コースを修了して、スキルバッジを獲得しましょう。 Apache ウェブサーバーを使用した一般公開ウェブサイトのデプロイ、 起動スクリプトを使用した Compute Engine VM の構成、 Windows の踏み台インスタンスとファイアウォール ルールを使用したセキュアな RDP の構成、ビルドした Docker イメージの Kubernetes クラスタへのデプロイと更新、 CloudSQL インスタンスの作成と MySQL データベースのインポートといったスキルを実証できます。 このスキルバッジは、 Google Cloud Certified Professional Cloud Architect 認定資格試験に出題されるトピックを理解するのに 役立つリソースです。 スキルバッジは、Google Cloud のプロダクトとサービスの習熟度を示す Google Cloud 発行の限定デジタルバッジで、 インタラクティブなハンズオン環境での知識の応用力を証明するものです。スキルバッジと 最終評価チャレンジラボを完了し、デジタルバッジを獲得して ネットワークで共有しましょう。
Complete the introductory Create and Manage Cloud SQL for PostgreSQL Instances skill badge to demonstrate skills in the following: migrating, configuring, and managing Cloud SQL for PostgreSQL instances and databases.
Google Cloud ネットワークの設定コースを修了してスキルバッジを獲得しましょう。 このコースでは、Google Cloud Platform で基本的なネットワーキング タスクを実行する方法を学習します。具体的には、カスタム ネットワークの作成、サブネット ファイアウォール ルールの追加、VM の作成、そして VM 同士が通信する際のレイテンシのテストについて学びます。
Google Cloud Managed Service for Prometheus を使った Kubernetes 環境のモニタリングについて学ぶ 「Google Cloud Managed Service for Prometheus で環境をモニタリングする」コースを修了するとスキルバッジを獲得できます。
Google Cloud での Kubernetes の管理」コースの中級スキルバッジを獲得できるアクティビティを修了すると、 kubectl を活用したデプロイの管理、 Google Kubernetes Engine(GKE)でのアプリケーションのモニタリングとデバッグ、継続的デリバリーの手法におけるスキルを実証できます。
Google Cloud での Kubernetes アプリケーションのデプロイ コースの中級スキルバッジを獲得できるアクティビティを修了すると、 Docker コンテナ イメージの構成とビルド、Google Kubernetes Engine(GKE)クラスタの作成と管理、kubectl を活用した効率的な クラスタ管理、堅牢な継続的デリバリー(CD)による Kubernetes アプリケーションのデプロイ手法といったスキルを実証できます。
「Google Cloud でウェブサイトを構築する」スキルバッジ コースを修了して入門レベルの スキルバッジを獲得しましょう。 このコースは「Get Cooking in Cloud」シリーズに基づいており、次の内容を扱います。 Cloud Run でウェブサイトをデプロイするCompute Engine でウェブアプリをホストするGoogle Kubernetes Engine でウェブサイトを作成、デプロイ、 スケーリングするCloud Build を使用してモノリシック アプリケーションからマイクロサービス アーキテクチャに移行する
このクエストでは、ウェブサイトが利用可能でスケーラブルであることを確認するために使用できる 4 つの Google Cloud ウェブサイト アーキテクチャについて学習します。 ハンズオンラボでスキルや知識を試したいですか?Build a Website on Google Cloud クエストの最後にあるチャレンジラボに登録し、完了した際には Google Cloud 限定デジタルバッジを獲得できます。このクエストは、Get Cooking in Cloud のビデオシリーズに基づいています。
Explore the fundamentals of Flutter application development in this hands-on quest! Within this quest, you will build a "Hello World" Flutter application, design a frontend for a shopping application, and learn how to connect your Flutter applications to backend services. Each lab in this quest utilizes a pre-provisioned development environment allowing minimal setup to get into the application code!
If you want to take your Google Cloud networking skills to the next level, look no further. This course is composed of labs that cover real-life use cases and it will teach you best practices for overcoming common networking bottlenecks. From getting hands-on practice with testing and improving network performance, to integrating high-throughput VPNs and networking tiers, Network Performance and Optimization is an essential course for Google Cloud developers who are looking to double down on application speed and robustness.
Learn the ins and outs of Google Cloud's operations suite, an important service for generating insights into the health of your applications. It provides a wealth of information in application monitoring, report logging, and diagnoses. These labs will give you hands-on practice with and will teach you how to monitor virtual machines, generate logs and alerts, and create custom metrics for application data. It is recommended that the students have at least earned a Badge by completing the Google Cloud Essentials. Looking for a hands on challenge lab to demonstrate your skills and validate your knowledge? On completing this course, enroll in and finish the challenge lab at the end of the Monitor and Log with Google Cloud Operations Suite to receive an exclusive Google Cloud digital badge.
Kubernetes は最も人気のあるコンテナ オーケストレーション システムであり、Google Kubernetes Engine は特に Google Cloud でマネージド Kubernetes Deployment をサポートするよう 設計されています。この上級レベルのコースでは、 Docker イメージとコンテナを構成し、本格的な Kubernetes Engine アプリケーションをデプロイする実践演習を行います。 また、コンテナ オーケストレーションを独自のワークフローに統合するために必要な 実践的なスキルを学びます。 ハンズオン チャレンジラボを受講して、 スキルを証明し、知識を確認することもできます。このコースの修了後、 Google Cloud での Kubernetes アプリケーションのデプロイコースの 最後にあるチャレンジラボを追加で完了して、Google Cloud の限定デジタルバッジを獲得しましょう。
¨Microservices" describes a software design pattern in which an application is a collection of loosely coupled services. These services are fine-grained, and can be individually maintained and scaled. The microservices architecture is ideal for the public cloud, with its focus on elastic scaling with on-demand resources. In this course, you will learn how to build Java applications using Spring Boot and Spring Cloud on Google Cloud. You'll use Spring Cloud Config to manage your application's configuration. You'll send and receive messages with Pub/Sub and Spring Integration. You'll also use Cloud SQL as a managed relational database for your Java applications, and learn how to migrate to Spanner, which is Google Cloud's globally-distributed strongly consistent database service. You'll also learn about tracing and debugging your Spring applications with Google Cloud Observability. To succeed in this course, you should be familiar with the Java programming language and building Java a…
The hands-on labs in this Quest are structured to give experienced app developers hands-on practice with the state-of-the-art developing applications in Google Cloud. The topics align with the Google Cloud Certified Professional Cloud Developer Certification. These labs follow the sequence of activities needed to create and deploy an app in Google Cloud from beginning to end. Be aware that while practice with these labs will increase your skills and abilities, it is recommended that you also review the exam guide and other available preparation resources.
この基礎レベルの クエスト は他の Qwiklabs 製品の中でもユニークです。これらのラボは、Google Cloud Certified Professional Cloud Architect 認定資格試験に出題されるトピックやサービスについて、 IT プロフェッショナルがハンズオンで演習するために作成されました。 IAM からネットワーキング、Kubernetes engine のデプロイまで、Goodle Cloud の知識が試される特定のラボで構成されています。これらのラボでの演習は スキルや能力の向上に役立ちますが、試験ガイドやその他の対策資料も参照することをお勧めします。
Cloud Logging is a fully managed service that performs at scale. It can ingest application and system log data from thousands of VMs and, even better, analyze all that log data in real time. In this fundamental-level Quest, you learn how to store, search, analyze, monitor, and alert on log data and events from Google Cloud. The labs in the Quest give you hands-on practice using Cloud Logging to maximize your learning experience and provide insight on how you can use Cloud Logging to your own Google Cloud environment.
この入門コースは、他のコースとは異なるものです。 これらのラボは、Google Cloud Certified Associate Cloud Engineer 認定資格試験に出題されるトピックやサービスについて、IT プロフェッショナルがハンズオンで演習するために作成されました。IAM からネットワーキング、 Kubernetes Engine のデプロイまでを 網羅する個別のラボで構成されており、Goodle Cloud の知識が試されます。これらのラボによる演習で 知識やスキルや能力を向上させることは可能ですが、 試験ガイドやその他の対策資料も参照することをおすすめします。
Google Cloud への CI / CD パイプラインの実装」コースを修了して中級のスキルバッジを獲得しましょう。 Artifact Registry、Cloud Build、Cloud Deploy の使用方法を学習できます。Cloud コンソール、Google Cloud CLI、Cloud Run、GKE を使用します 。このコースでは、継続的インテグレーション(CI) パイプラインの構築、アーティファクトの保存と保護、脆弱性のスキャン、承認されたリリースの有効性の証明 の方法を説明します。さらに、アプリケーションを GKE と Cloud Run の両方にデプロイするという実践的な経験を積むことができます。
Course four of the Anthos series prepares students to consider multiple approaches for modernizing applications and services within Anthos environments. Topics include optimizing workloads on serverless platforms and migrating workloads to Anthos. This course is a continuation of course three, Anthos on Bare Metal, and assumes direct experience with the topics covered in that course.
This on-demand course equips students to understand and adopt Istio-based service-mesh with Anthos for centralized observability, traffic management, and service-level security. This is the second course of the Architecting Hybrid Cloud Infrastructure with Anthos series. After completing this course, learners should continue to the Hybrid Cloud Multi-Cluster with Anthos course. Completion of the Architecting with Google Kubernetes Engine path is a prerequisite for this course.
Welcome to Hybrid Cloud Infrastructure Foundations with Anthos! This is the first course of the Architecting Hybrid Cloud Infrastructure with Anthos path. Anthos enables you to build and manage modern applications, and gives you the freedom to choose where to run them. Anthos gives you one consistent experience in both your on-premises and cloud environments. During this course, you will be presented with modules that will take you through skills that you will use as an architect or administrator running Anthos environments. The modules in this course include videos, hands-on labs, and links to helpful documentation.
Learn how to upgrade capacity for the Apigee for private cloud platform installation, and how to monitor the platform. This is the third and final course of the Installing and Managing Google Cloud's Apigee API Platform for Private Cloud series.
This course discusses the management and operation of the Apigee platform for private cloud. It includes topics on operational practices, API deployment, analytics, security and upgrade of the platform. This is the second course of the Installing and Managing Google Cloud's Apigee API Platform for Private Cloud course series. After completing this course, enroll in the On Premises Capacity Upgrade and Monitoring with Google Cloud's Apigee API Platform course.
This course introduces you to the fundamentals and advanced practices applicable to the installation and management of Google Cloud's Apigee API Platform for private cloud. Through a combination of lectures, hands-on labs, and supplemental materials, you will learn how to design, install, secure, manage, and scale Apigee API Platform. This is the first course of the Installing and Managing Google Cloud's Apigee API Platform for Private Cloud series. After completing this course, enroll in the On Premises Management, Security, and Upgrade with Google Cloud's Apigee API Platform course.
This course discusses the upgrade process for Apigee hybrid, and teaches you how to monitor and troubleshoot the hybrid runtime plane components.
This course discusses how environments are managed in Apigee hybrid, and how runtime plane components are secured. You will also learn how to deploy and debug API proxies in Apigee hybrid, and about capacity planning and scaling.
This course introduces you to the fundamentals and practices used to install and manage Google Cloud's Apigee API Platform for hybrid cloud. Through a combination of lectures, a hands-on lab, and supplemental materials, you will learn how to install and operate the Apigee API Platform.
In this course, you learn how to create APIs that utilize multiple services and how you can use custom code on Apigee. You will also learn about fault handling, and how to share logic between proxies. You learn about traffic management and caching. You also create a developer portal, and publish your API to the portal. You learn about logging and analytics, as well as CI/CD and the different deployment models supported by Apigee. Through a combination of lectures, hands-on labs, and supplemental materials, you will learn how to design, build, secure, deploy, and manage API solutions using Google Cloud's Apigee API Platform.This is the third and final course of the Developing APIs with Google Cloud's Apigee API Platform course series.
Apigee X のデプロイと管理」クエストを修了するとスキルバッジを獲得できます。 X このクエストでは、Apigee X アーキテクチャ、Google Cloud プロジェクト内の Apigee X 組織のプロビジョニング方法、 Apigee API と UI を使用した Apigee X の管理、 Cloud Armor と Apigee 脅威保護ポリシーを使用して API を保護する方法を学びます。
In this course, you learn how to design APIs, and how to use OpenAPI specifications to document them. You learn about the API life cycle, and how the Apigee API platform helps you manage all aspects of the life cycle. You learn about how APIs can be designed using API proxies, and how APIs are packaged as API products to be used by app developers. Through a combination of lectures, hands-on labs, and supplemental materials, you will learn how to design, build, secure, deploy, and manage API solutions using Google Cloud's Apigee API Platform. This is the first course of the Developing APIs with Google Cloud's Apigee API Platform series. After completing this course, enroll in the API Security on Google Cloud's Apigee API Platform course.
「Cloud Run でのサーバーレス アプリケーションの開発」コースの中級スキルバッジを獲得すると、 データ マネジメントのための Cloud Run と Cloud Storage の統合、 Cloud Run と Pub/Sub を使用した復元力のある非同期システムの構築、 Cloud Run を使用した REST API ゲートウェイの構築、Cloud Run でのサービスの構築とデプロイといったスキルを実証できます。
Twelve years ago Lily started the Pet Theory chain of veterinary clinics, and has been expanding rapidly. Now, Pet Theory is experiencing some growing pains: their appointment scheduling system is not able to handle the increased load, customers aren't receiving lab results reliably through email and text, and veteranerians are spending more time with insurance companies than with their patients. Lily wants to build a cloud-based system that scales better than the legacy solution and doesn't require lots of ongoing maintenance. The team has decided to go with serverless technology. For the labs in the Google Cloud Run Serverless Quest, you will read through a fictitious business scenario in each lab and assist the characters in implementing a serverless solution. Looking for a hands on challenge lab to demonstrate your skills and validate your knowledge? On completing this quest, enroll in and finish the additional challenge lab at the end of this quest to receive an exclusive Google…
「Firebase を使用したサーバーレス アプリの開発」の中級スキルバッジを獲得すると、 Firebase を使用したサーバーレス ウェブ アプリケーションの設計とビルド、 データベース管理における Firestore の活用、Cloud Build を使用したデプロイ プロセスの自動化、 アプリケーションと Google アシスタント機能の統合といったスキルを実証できます。
Firebase is a backend-as-service (Bass) platform for creating mobile and web applications. In this quest you will learn to build serverless web apps, import data into a serverless database, and build a Google Assistant application with Firebase and its Google Cloud integrations. Looking for a hands on challenge lab to demonstrate your skills and validate your knowledge? On completing this quest, enroll in and finish the additional challenge lab at the end of this quest to receive an exclusive Google Cloud digital badge.
Dart is a client-optimized language for developing fast apps on any platform. Dart also forms the foundation of Flutter by providing the language and runtimes that power Flutter apps. In this quest you will learn the basics of Dart in a prepared development environment. Be sure to tag #flutterfestival in your social posts!
Flutter is Google's UI toolkit for building beautiful, natively compiled applications for mobile, web, and desktop from a single codebase. In this quest you will learn how to create a Flutter app using generated template code. Be sure to tag #flutterfestival in your social posts!
「Google Kubernetes Engine の費用の最適化」の中級スキルバッジを獲得すると、 マルチテナント クラスタの作成と管理、各 Namespace のリソース使用状況のモニタリング、 効率向上のためのクラスタと Pod の自動スケーリングの構成、最適なリソース配分のためのロード バランシングの設定、 アプリケーションの健全性と費用対効果を確保するための liveness プローブと readiness プローブの実装といったスキルを実証できます。
Anthos を使ってみましょう。 この Google Kubernetes Engine 中心のベスト プラクティス ハンズオン ラボ シリーズでは、 GKE 本番環境をデプロイおよび管理する際のセキュリティのスケーリング に焦点を当てます。具体的には、ロールベース アクセス制御、セキュリティ強化、 VPC ネットワーキング、バイナリ承認について学びます。
セキュリティは、Google Cloud のサービスにおける妥協のない機能であり、これを念頭に、 プロジェクトをまたいで安全性を確保し ID を保護するための専用ツールが 開発されています。この入門コースでは、 ユーザー アカウントと仮想マシン アカウントの管理における主要機能である Google Cloud の Identity and Access Management(IAM)サービス の実践演習を行います。VPC と VPN のプロビジョニングを通してネットワーク セキュリティを実際に体験し、セキュリティ 脅威とデータ損失防止に使用できるツールについて学びます。
このコースでは、Kubernetes と Google Kubernetes Engine(GKE)のセキュリティについて、およびロギングとモニタリングについて学びます。また、Google Cloud マネージド ストレージ サービスとデータベース サービスを GKE 内で使用する方法についても学びます。 これは「Google Kubernetes Engine を使用した構築」シリーズの 2 つ目のコースです。このコースを修了したら、「信頼性に優れた Google Cloud インフラストラクチャ: 設計とプロセス」コースか、「Hybrid Cloud Infrastructure Foundations with Anthos」コースに登録してください。
This on-demand course equips students to understand, configure, and maintain multi-cluster Kubernetes infrastructures using Anthos GKE, and Istio-based service mesh, whether deployed with Anthos on Google Cloud or with Anthos deployed on VMware. This is the third, and final, course of the Architecting Hybrid Cloud Infrastructure with Anthos series. Completion of the Architecting with Google Kubernetes Engine path is a prerequisite for this course.
「Google Kubernetes Engine を使用した構築: ワークロード」を履修することで、クラウドネイティブ アプリケーション開発のすべてを網羅した取り組みに着手することができるようになります。学習体験全体を通して、Kubernetes オペレーション、デプロイ管理、GKE ネットワーキング、永続ストレージについて詳しく学びます。 これは「Google Kubernetes Engine を使用した構築」シリーズの最初のコースです。このコースを修了したら、「Google Kubernetes Engine を使用した構築: 実践」コースに登録してください。
Google Cloud での DevOps ワークフローの実装 コースの中級スキルバッジを獲得できるアクティビティを修了すると、 Cloud Source Repositories を使用した Git リポジトリの作成、 Google Kubernetes Engine(GKE)上でのデプロイのリリース、管理、スケール、 コンテナ イメージのビルドと GKE へのデプロイを自動化する CI / CD パイプラインの設計といったスキルを実証できます。
入門スキルバッジ コース「Google Cloud Observability を使用したモニタリングとロギング」を修了すると、 Compute Engine における仮想マシンのモニタリング、 複数プロジェクトの監視を目的とした Cloud Monitoring の利用、モニタリング機能とロギング機能の Cloud Functions への拡張、 アプリケーションに対するカスタム指標の作成と送信、カスタム指標に基づく Cloud Monitoring アラートの構成に関するスキルを実証できます。
このコース「Google Kubernetes Engine を使用した構築: 基礎」では、Google Cloud の全体像と基本的な考え方を確認した後、ソフトウェア コンテナを作成して管理する方法と Kubernetes のアーキテクチャについて説明します。
Course one of the Architecting Hybrid Cloud with Anthos series introduces participants to manage multi-cloud and hybrid Kubernetes deployments using Anthos. Through presentations and hands-on labs, participants explore planning and creating Anthos environments and building manageable and reliable multi-cluster Kubernetes infrastructure environments centered around Anthos and containers. This course is a continuation of Architecting with GKE and assumes direct experience with the technologies covered in that course.
Course two of the Architecting Hybrid Cloud with Anthos series prepares students to operate and observe Anthos environments. Through presentations and hands-on labs, participants explore adjusting existing clusters, setting up advanced traffic routing policies, securing communication across workloads, and observing clusters in Anthos. This course is a continuation of course one, Multi-Cluster, Multi-Cloud with Anthos, and assumes direct experience with the topics covered in that course.
多くの IT 組織では、アジリティを求める開発者と、安定性を重視する運用担当者の間で、インセンティブが調整されていません。サイト信頼性エンジニアリング(SRE)は、Google が開発と運用の間のインセンティブを調整し、ミッション クリティカルな本番環境サポートを行う方法です。SRE の文化的および技術的手法を導入することで、ビジネスと IT の連携を改善できます。このコースでは、Google の SRE の主な手法を紹介し、SRE の組織的な導入を成功させるうえで IT リーダーとビジネス リーダーが果たす重要な役割について説明します。
This course introduces the products and solutions to solve NLP problems on Google Cloud. Additionally, it explores the processes, techniques, and tools to develop an NLP project with neural networks by using Vertex AI and TensorFlow.
この自習式トレーニング コースでは、Google Cloud でのセキュリティの管理と手法全般について学習します。録画された講義、デモ、ハンズオンラボを通して、Cloud Storage アクセス制御テクノロジー、セキュリティ キー、顧客指定の暗号鍵、API アクセス制御、スコーピング、Shielded VM、暗号化、署名付き URL など、安全な Google Cloud ソリューションを構築するためのコンポーネントについて学習し、演習を行います。また、Kubernetes 環境の保護についても説明します。
この自習式トレーニング コースでは、参加者は、分散型サービス拒否攻撃、フィッシング攻撃、コンテンツの分類と使用に関わる脅威など、Google Cloud ベース インフラストラクチャのさまざまな箇所での攻撃を緩和する方法について学習します。さらに、Security Command Center、Cloud Logging と監査ロギングについて、および Forseti を使って組織のセキュリティ ポリシーへの全体的なコンプライアンスを確認する方法についても学習します。
Google Cloud でのクラウド セキュリティの基礎の実践 スキルバッジを獲得できる中級コースを修了すると、 Identity and Access Management(IAM)でのロールの作成と割り当て、 サービス アカウントの作成と管理、Virtual Private Cloud(VPC)ネットワーク全体でのプライベート接続の有効化、 Identity-Aware Proxy を使用したアプリケーション アクセスの制限、Cloud Key Management Service(KMS)を使用した鍵と暗号化されたデータの管理、 限定公開 Kubernetes クラスタの作成に関するスキルを実証できます。
安全な Google Cloud ネットワークの構築コースを修了してスキルバッジを獲得しましょう。このコースでは、Google Cloud でアプリケーションを ビルド、スケール、保護するための複数のネットワーク関連リソースについて学習します。
「Introduction to Generative AI」、「Introduction to Large Language Models」、「Introduction to Responsible AI」の各コースを修了すると、スキルバッジを獲得できます。最終テストに合格することで、ジェネレーティブ AI の基礎概念を理解していることが証明されます。 スキルバッジは、Google Cloud のプロダクトとサービスに関する知識を認定するために Google Cloud が発行するデジタルバッジです。スキルバッジは、ソーシャル メディアの公開プロフィールを作成してそこに追加することで一般向けに共有できます。
このコースでは、生成 AI モデルとのやりとり、ビジネス アイデアのプロトタイプ作成、本番環境へのリリースを行うツールである Vertex AI Studio をご紹介します。現実感のあるユースケースや、興味深い講義、ハンズオンラボを通して、プロンプトの作成から成果の実現に至るまでのライフサイクルを詳細に学び、Gemini マルチモーダル アプリケーションの開発、プロンプトの設計、モデルのチューニングに Vertex AI を活用する方法を学習します。Vertex AI Studio を利用することで、生成 AI をプロジェクトに最大限に活かせるようになることを目指します。
このコースでは、ディープ ラーニングを使用して画像キャプション生成モデルを作成する方法について学習します。エンコーダやデコーダなどの画像キャプション生成モデルのさまざまなコンポーネントと、モデルをトレーニングして評価する方法を学びます。このコースを修了すると、独自の画像キャプション生成モデルを作成し、それを使用して画像のキャプションを生成できるようになります。
このコースでは、Transformer アーキテクチャと Bidirectional Encoder Representations from Transformers(BERT)モデルの概要について説明します。セルフアテンション機構をはじめとする Transformer アーキテクチャの主要コンポーネントと、それが BERT モデルの構築にどのように使用されているのかについて学習します。さらに、テキスト分類、質問応答、自然言語推論など、BERT を適用可能なその他のタスクについても学習します。このコースの推定所要時間は約 45 分です。
このコースでは、アテンション機構について学習します。アテンション機構とは、ニューラル ネットワークに入力配列の重要な部分を認識させるための高度な技術です。アテンションの仕組みと、アテンションを活用して機械翻訳、テキスト要約、質問応答といったさまざまな ML タスクのパフォーマンスを改善する方法を説明します。
このコースでは、機械翻訳、テキスト要約、質問応答などのシーケンス ツー シーケンス タスクに対応する、強力かつ広く使用されている ML アーキテクチャである Encoder-Decoder アーキテクチャの概要を説明します。Encoder-Decoder アーキテクチャの主要なコンポーネントと、これらのモデルをトレーニングして提供する方法について学習します。対応するラボのチュートリアルでは、詩を生成するための Encoder-Decoder アーキテクチャの簡単な実装を、TensorFlow で最初からコーディングします。
このコースでは拡散モデルについて説明します。拡散モデルは ML モデル ファミリーの一つで、最近、画像生成分野での有望性が示されました。拡散モデルは物理学、特に熱力学からインスピレーションを得ています。ここ数年、拡散モデルは研究と産業界の両方で広まりました。拡散モデルは、Google Cloud の最先端の画像生成モデルやツールの多くを支える技術です。このコースでは、拡散モデルの背景にある理論と、モデルを Vertex AI でトレーニングしてデプロイする方法について説明します。
この入門レベルのマイクロラーニング コースでは、責任ある AI の概要と重要性、および Google が責任ある AI を自社プロダクトにどのように実装しているのかについて説明します。また、Google の AI に関する 7 つの原則についても説明します。
このコースは、大規模言語モデル(LLM)とは何か、どのようなユースケースで活用できるのか、プロンプトのチューニングで LLM のパフォーマンスを高めるにはどうすればよいかについて学習する、入門レベルのマイクロ ラーニング コースです。独自の生成 AI アプリを開発する際に利用できる Google ツールも紹介します。
この入門レベルのマイクロラーニング コースでは、生成 AI の概要、利用方法、従来の機械学習の手法との違いについて説明します。独自の生成 AI アプリを作成する際に利用できる Google ツールも紹介します。
この自習式トレーニング コースでは、Google Cloud でのセキュリティの管理と手法全般について学習します。録画された講義、デモ、ハンズオンラボを通して、Cloud Identity、Resource Manager、Cloud IAM、Virtual Private Cloud ファイアウォール、Cloud Load Balancing、Cloud ピアリング、Cloud Interconnect、VPC Service Controls など、安全な Google Cloud ソリューションのコンポーネントについて学び、演習を行います。 これは「Security in Google Cloud」シリーズの最初のコースです。このコースを修了したら、「Security Best Practices in Google Cloud」コースを受講してください。
「Networking in Google Cloud」シリーズの 2 番目のコース「Routing and Addressing」へようこそ。 このコースでは、Google Cloud のネットワーク機能に関連するルーティングとアドレス指定の中核となるコンセプトについて説明します。 モジュール 1 では、Google Cloud でのネットワーク ルーティングとアドレス指定について学習し、IPv4 のルーティング、お客様所有 IP アドレスの使用、Cloud DNS の設定などの主要な構成要素を取り上げることで、基礎知識を身に付けます。モジュール 2 では、プライベート接続のオプションに話題を移し、内部 IP アドレスを使用して Google やその他のサービスにプライベート アクセスするユースケースや手法について説明します。 このコースを修了すると、Google Cloud 内のネットワーク トラフィックを効果的にルーティングおよびアドレス指定する方法をしっかりと把握できるようになります。
ネットワーキングはクラウド コンピューティングにおける主要なテーマです。Google Cloud の基盤となる 構造であり、すべてのリソースとサービスを 相互に接続するものです。このコースでは、Google Cloud の基本的なネットワーキング サービスについて学び、 優れたネットワークを開発するための専用ツールを使用して実践演習を 行います。VPC についての詳細な学習から、エンタープライズ クラスのロードバランサの作成まで、 「Google Cloud ネットワークにおけるデプロイの自動化とトラフィックの管理」では、 堅牢なネットワークを今すぐ構築するために必要となる実践的な経験を積むことができます。
Networking in Google Cloud 日本語版は、6 部構成のコースシリーズです。6 部構成のコースシリーズの最初のコース「Networking in Google Cloud: Fundamentals」へようこそ。 このコースでは、ネットワーキングの基礎、Virtual Private Cloud(VPC)、VPC ネットワークの共有など、ネットワーキングの主なコンセプトに関する包括的な概要を説明します。また、ネットワークのロギング手法とモニタリング手法についても説明します。
このコースは、Professional Cloud Security Engineer(PCSE)認定試験への準備に役立ちます。受講者は、一連の講義、診断用の問題、理解度チェックを通じて試験内容についての理解を深め、準備を整えることができます。このコースを修了した暁には、受講者それぞれに独自のワークブックができあがるので、認定試験に向けてほかにどのような準備を行うべきかがわかるようになります。
Google Cloud の基礎: コア インストラクチャ では、Google Cloud に関する重要なコンセプトと用語について説明します。このコースでは動画とハンズオンラボを通じて学習を進めていきます。Google Cloud の多数のコンピューティング サービスとストレージ サービス、そしてリソースとポリシーを管理するための重要なツールについて比較しながら説明します。
このコースでは、Google Cloud のインフラストラクチャとアプリケーションのパフォーマンスをモニタリングして改善するための手法を学びます。 プレゼンテーション、デモ、ハンズオンラボ、実際の事例紹介を組み合わせて活用することにより、フルスタック モニタリング、リアルタイムでのログ管理と分析、本番環境でのコードのデバッグ、アプリケーション パフォーマンスのボトルネックのトレース、CPU とメモリ使用量のプロファイリングに関する経験を積むことができます。
「Google Cloud における Terraform を使用したインフラストラクチャの構築」の中級スキルバッジを獲得すると、 Terraform を使用した Infrastructure as Code(IaC)の原則、Terraform 構成を使用した Google Cloud リソースのプロビジョニングと管理、 状態の効果的な管理(ローカルおよびリモート)、組織内での再利用性を念頭に置いた Terraform コードのモジュール化といったスキルを実証できます。
「Google Cloud ネットワークの構築」コースを修了してスキルバッジを獲得しましょう。このコースでは、 アプリケーションをデプロイしてモニタリングするための複数の方法について学びます。具体的には、IAM ロールの確認とプロジェクト アクセスの追加 / 削除、 VPC ネットワークの作成、Compute Engine VM のデプロイとモニタリング、 SQL クエリの記述、Compute Engine での VM のデプロイとモニタリング、Kubernetes を使用した複数のデプロイ アプローチによるアプリケーションのデプロイなどです。
このコースでは、Google Cloud 向けに Terraform を使用する方法の概要を説明します。このコースを受講すると、Terraform を使用して Infrastructure as Code を実装し、その主要な特性と機能を使って Google Cloud インフラストラクチャを作成および管理する方法について説明できるようになります。 また、Terraform を使用して Google Cloud のリソースを構築、管理する実践的な演習を受けられます。
「Google Kubernetes Engine を使ってみる」コースへようこそ。Kubernetes にご興味をお持ちいただきありがとうございます。Kubernetes は、アプリケーションとハードウェア インフラストラクチャとの間にあるソフトウェア レイヤです。Google Kubernetes Engine は、Google Cloud 上のマネージド サービスとしての Kubernetes を提供します。 このコースでは、Google Kubernetes Engine(一般に GKE と呼ばれています)の基礎と、Google Cloud でアプリケーションをコンテナ化して実行する方法を学びます。このコースでは、まず Google Cloud の基本事項を確認します。続けて、コンテナ、Kubernetes、Kubernetes アーキテクチャ、Kubernetes オペレーションの概要について学びます。
このコースでは、実績ある設計パターンを利用して、信頼性と効率に優れたソリューションを Google Cloud で構築する方法を学習します。本コースは、Google Compute Engine を使用した構築 または Google Kubernetes Engine を使用した構築 のコースの続きで、これらのコースで取り上げているテクノロジーの実践経験があることを前提としています。参加者は、講義、設計アクティビティ、ハンズオンラボを通して、ビジネス要件と技術要件を定義し、バランスを取りながら、信頼性、可用性、安全性、費用対効果に優れた Google Cloud のデプロイを設計する方法を学びます。
このオンデマンド速習コースでは、Google Cloud が提供する包括的で柔軟なインフラストラクチャとプラットフォーム サービスについて紹介します。動画講義、デモ、ハンズオンラボを通してさまざまなソリューションの要素について学び、実際にデプロイしてみます。これにはセキュリティを維持しながらネットワークを相互接続する方法や、ロード バランシング、自動スケーリング、インフラストラクチャの自動化、マネージド サービスも含まれます。
「Google Cloud におけるアプリ開発環境の設定」コースを完了すると、スキルバッジを獲得できます。このコースでは、 Cloud Storage、Identity and Access Management、Cloud Functions、Pub/Sub のテクノロジーの基本機能を使用して、ストレージ中心のクラウド インフラストラクチャを構築し接続する方法を学びます。
「b>Compute Engine での Cloud Load Balancing の実装」入門コースを修了してスキルバッジを獲得すると、次のスキルを実証できます: Compute Engine における仮想マシンの作成とデプロイ、 ネットワーク ロードバランサとアプリケーション ロードバランサの構成。
このコースでは、Associate Cloud Engineer 認定試験の合格を目指す方が受験の準備を進めることができます。試験範囲に含まれる Google Cloud ドメインの概要と、ドメインに関する知識を高めるための学習計画の作成方法について学習します。
このオンデマンド速習コースでは、Google Cloud で提供される包括的かつ柔軟なインフラストラクチャとプラットフォームのサービスについて、Compute Engine を中心に紹介します。受講者は、動画講義、デモ、ハンズオンラボを通してソリューションの各要素について学習し、演習を行います。これらの要素には、ネットワーク、システム、アプリケーション サービスなどのインフラストラクチャ コンポーネントが含まれます。また、実践的なソリューションの実装も取り上げ、顧客指定の暗号鍵、セキュリティとアクセス管理、割り当てと課金、リソース モニタリングなどについても学習します。
このオンデマンド速習コースでは、Google Cloud で提供される包括的かつ柔軟なインフラストラクチャとプラットフォームのサービスについて、Compute Engine を中心に紹介します。受講者は、動画講義、デモ、ハンズオンラボを通してさまざまなソリューションの各要素について学習し、実際のデプロイを演習します。これらの要素には、ネットワークや仮想マシン、アプリケーション サービスなどのインフラストラクチャ コンポーネントが含まれます。コンソールと Cloud Shell を使用して Google Cloud を運用する方法についても学習します。また、クラウド アーキテクトの役割、インフラストラクチャ設計の方法、Virtual Private Cloud(VPC)を使用した仮想ネットワークの構成、プロジェクト、ネットワーク、サブネットワーク、IP アドレス、ルート、ファイアウォール ルールについても学習します。