Purnasai Vuyyuru
Date d'abonnement : 2025
Ligue de Diamant
4750 points
Date d'abonnement : 2025
In this Google DeepMind course you will learn how to prepare text data for language models to process. You will investigate the tools and techniques used to prepare, structure, and represent text data for language models, with a focus on tokenization and embeddings. You will be encouraged to think critically about the decisions behind data preparation, and what biases within the data may be introduced into models. You will analyze trade-offs, learn how to work with vectors and matrices, how meaning is represented in language models. Finally, you will practice designing a dataset ethically using the Data Cards process, ensuring transparency, accountability, and respect for community values in AI development.
In this Google DeepMind course, you will learn the fundamentals of language models and gain a high-level understanding of the machine learning development pipeline. You will consider the strengths and limitations of traditional n-gram models and advanced transformer models. Practical coding labs will enable you to develop insights into how machine learning models work and how they can be used to generate text and identify patterns in language. Through real-world case studies, you will build an understanding around how research engineers operate. Drawing on these insights you will identify problems that you wish to tackle in your own community and consider how to leverage the power of machine learning responsibly to address these problems within a global and local context.
Complete the advanced Google DeepMind: Train A Small Language Model skill badge by completing this course to demonstrate skills in the following: formulating real-world language model research problems; building a simple tokenizer; preparing a dataset for training a transformer language model; running the training loop of a small language model. Access this lab at no-cost by signing up for the no-cost subscription. Receive 35 free credits each month!
Terminez le cours d'introduction Premiers pas avec Sensitive Data Protection pour recevoir un badge de compétence dans le domaine suivant : utilisation des services Sensitive Data Protection (y compris l'API Cloud Data Loss Prevention) pour inspecter, masquer et supprimer les éléments d'identification des données sensibles dans Google Cloud.
Obtenez un badge de compétence en suivant le cours Google Cloud Compute : principes de base, où vous apprendrez à utiliser des machines virtuelles (VM), des disques persistants et des serveurs Web à l'aide de Compute Engine.