参加 ログイン

Colomer Francisco

メンバー加入日: 2023

ダイヤモンド リーグ

43048 ポイント
Google DeepMind: 02 Represent Your Language Data Earned 1月 9, 2026 EST
Google DeepMind: 01 Build Your Own Small Language Model Earned 1月 4, 2026 EST
Discover Business Value for Customers Earned 12月 31, 2025 EST
Partner Pre-Sales Readiness Training Earned 12月 26, 2025 EST
Modernizing Mainframe Applications with Google Cloud Earned 12月 22, 2025 EST
AlloyDB インスタンスの作成と管理 Earned 12月 19, 2025 EST
Bigtable インスタンスの作成と管理 Earned 12月 17, 2025 EST
Cloud Spanner インスタンスの作成と管理 Earned 12月 15, 2025 EST
Cloud SQL for PostgreSQL インスタンスの作成と管理 Earned 12月 11, 2025 EST
Vertex AI Studio の概要 Earned 12月 5, 2025 EST
生成 AI の概要 Earned 12月 4, 2025 EST
Introduction to Reliable Deep Learning Earned 11月 30, 2025 EST
Database Migration Service を使用した MySQL データの Cloud SQL への移行 Earned 11月 27, 2025 EST
Enterprise Database Migration Earned 11月 25, 2025 EST
Select a Google Cloud Database for Your Applications Earned 9月 24, 2025 EDT
Google Cloud の基礎: コア インフラストラクチャ Earned 7月 26, 2025 EDT
企業における ML Earned 9月 29, 2024 EDT
How Google Does Machine Learning - 日本語版 Earned 5月 29, 2024 EDT
BigQuery ML を使用した予測モデリング向けのデータ エンジニアリング Earned 11月 15, 2023 EST
BigQuery でデータ ウェアハウスを構築する Earned 11月 14, 2023 EST
Google Cloud の ML API 用にデータを準備 Earned 11月 13, 2023 EST
Dataflow を使用したサーバーレスのデータ処理: 運用 Earned 11月 9, 2023 EST
Dataflow を使用したサーバーレスのデータ処理: パイプラインの開発 Earned 11月 4, 2023 EDT
Dataflow を使用したサーバーレスのデータ処理: 基礎 Earned 10月 26, 2023 EDT
Smart Analytics, Machine Learning, and AI on Google Cloud - 日本語版 Earned 10月 23, 2023 EDT
Google Cloud でのバッチデータ パイプラインの構築 Earned 10月 22, 2023 EDT
Google Cloud でストリーミング データ パイプラインを構築する Earned 10月 20, 2023 EDT
Google Cloud でデータレイクとデータ ウェアハウスを構築する Earned 10月 14, 2023 EDT
Google Cloud Big Data and Machine Learning Fundamentals - 日本語版 Earned 10月 12, 2023 EDT
Professional Data Engineer の取得に向けた準備 Earned 10月 4, 2023 EDT

In this Google DeepMind course you will learn how to prepare text data for language models to process. You will investigate the tools and techniques used to prepare, structure, and represent text data for language models, with a focus on tokenization and embeddings. You will be encouraged to think critically about the decisions behind data preparation, and what biases within the data may be introduced into models. You will analyze trade-offs, learn how to work with vectors and matrices, how meaning is represented in language models. Finally, you will practice designing a dataset ethically using the Data Cards process, ensuring transparency, accountability, and respect for community values in AI development.

詳細

In this Google DeepMind course, you will learn the fundamentals of language models and gain a high-level understanding of the machine learning development pipeline. You will consider the strengths and limitations of traditional n-gram models and advanced transformer models. Practical coding labs will enable you to develop insights into how machine learning models work and how they can be used to generate text and identify patterns in language. Through real-world case studies, you will build an understanding around how research engineers operate. Drawing on these insights you will identify problems that you wish to tackle in your own community and consider how to leverage the power of machine learning responsibly to address these problems within a global and local context.

詳細

The course aims to train Google technical sales partners on the business value discovery process using proprietary content. Course activities use an external tool (Yoodli). Refer to Yoodli's Terms of Service and Privacy Notice.

詳細

Want to learn more about Google Cloud? Grow your Google Cloud knowledge, strengthen your skills to win with customers, and scale your Google Cloud business. Find it here in one handy location.

詳細

This course enables system integrators and partners to understand the principles of automated migrations, plan legacy system migrations to Google Cloud leveraging G4 Platform, and execute a trial code conversion.

詳細

「AlloyDB インスタンスの作成と管理」スキルバッジを獲得できる入門コースを修了すると、次のスキルを身につけていることを実証できます。AlloyDB の主なオペレーションと タスクを実行する、PostgreSQL から AlloyDB に移行する、AlloyDB データベースを管理する、 AlloyDB カラム型エンジンを使用して分析クエリを高速化する。

詳細

「Bigtable インスタンスの作成と管理」入門コースを修了してスキルバッジを獲得すると、インスタンスの作成、スキーマの設計、 データのクエリ、Bigtable での管理タスク実行(パフォーマンスのモニタリング、ノードの自動スケーリングとレプリケーションの構成など)のスキルを実証できます。

詳細

「Cloud Spanner インスタンスの作成と管理」スキルバッジを 獲得できる入門コースを修了すると、 Cloud Spanner のインスタンスとデータベースの作成と操作、 さまざまな手法による Cloud Spanner データベースの読み込み、 Cloud Spanner データベースのバックアップ、スキーマの定義、クエリプランの理解、 Cloud Spanner インスタンスに接続された最新ウェブアプリのデプロイといったスキルを実証できます。

詳細

「Cloud SQL for PostgreSQL インスタンスの作成と管理」入門スキルバッジ コースを完了すると、 Cloud SQL for PostgreSQL インスタンスとデータベースを移行、構成、管理するスキルを証明できます。

詳細

このコースでは、生成 AI モデルとのやりとり、ビジネス アイデアのプロトタイプ作成、本番環境へのリリースを行うツールである Vertex AI Studio をご紹介します。現実感のあるユースケースや、興味深い講義、ハンズオンラボを通して、プロンプトの作成から成果の実現に至るまでのライフサイクルを詳細に学び、Gemini マルチモーダル アプリケーションの開発、プロンプトの設計、モデルのチューニングに Vertex AI を活用する方法を学習します。Vertex AI Studio を利用することで、生成 AI をプロジェクトに最大限に活かせるようになることを目指します。

詳細

この入門レベルのマイクロラーニング コースでは、生成 AI の概要、利用方法、従来の機械学習の手法との違いについて説明します。独自の生成 AI アプリを作成する際に利用できる Google ツールも紹介します。

詳細

This course introduces you to the world of reliable deep learning, a critical discipline focused on developing machine learning models that not only make accurate predictions but also understand and communicate their own uncertainty. You'll learn how to create AI systems that are trustworthy, robust, and adaptable, particularly in high-stakes scenarios where errors can have significant consequences.

詳細

「Database Migration Service を使用した MySQL データの Cloud SQL への移行」入門スキルバッジ コースを完了すると、 Database Migration Service で利用可能なさまざまなジョブタイプと接続オプションを使用した、 MySQL データの Cloud SQL への移行や、 Database Migration Service ジョブを実行する際の MySQL ユーザーデータの移行などのスキルを証明できます。

詳細

This course is intended to give architects, engineers, and developers the skills required to help enterprise customers architect, plan, execute, and test database migration projects. Through a combination of presentations, demos, and hands-on labs participants move databases to Google Cloud while taking advantage of various services. This course covers how to move on-premises, enterprise databases like SQL Server to Google Cloud (Compute Engine and Cloud SQL) and Oracle to Google Cloud bare metal.

詳細

In this course, you learn to analyze and choose the right database for your needs, to effectively develop applications on Google Cloud. You explore relational and NoSQL databases, dive into Cloud SQL, AlloyDB, and Spanner, and learn how to align database strengths with your application requirements, including those of generative AI. Gain hands-on experience configuring Vector Search and migrating applications to the cloud.

詳細

Google Cloud の基礎: コア インストラクチャ では、Google Cloud に関する重要なコンセプトと用語について説明します。このコースでは動画とハンズオンラボを通じて学習を進めていきます。Google Cloud の多数のコンピューティング サービスとストレージ サービス、そしてリソースとポリシーを管理するための重要なツールについて比較しながら説明します。

詳細

このコースでは、ML ワークフローに対する実践的なアプローチを取り上げます。具体的には、いくつかの ML のビジネス要件とユースケースに取り組む ML チームをケーススタディ形式で紹介します。このチームは、データ マネジメントとガバナンスに必要なツールを理解し、データの前処理に最適なアプローチを検討する必要があります。 2 つのユースケースに対して ML モデルを構築するための 3 つのオプションがチームに提示されます。このコースでは、チームの目標を達成するために、AutoML、BigQuery ML、カスタム トレーニングを使用する理由について説明します。

詳細

Google Cloud で機械学習を実装する際のベスト プラクティスには何があるでしょうか。Vertex AI とは何であり、このプラットフォームを使用してコードを 1 行も記述せずに AutoML 機械学習モデルを迅速に構築、トレーニング、デプロイするにはどうすればよいでしょうか。機械学習とはどのようなもので、どのような問題の解決に役立つのでしょうか。 Google では機械学習について独自の視点で考えています。マネージド データセット、特徴量ストア、そしてコードを 1 行も記述せずに迅速に機械学習モデルを構築、トレーニング、デプロイする手段を 1 つにまとめた統合プラットフォームを提供するとともに、データにラベル付けし、TensorFlow、SciKit Learn、Pytorch、R やその他のフレームワークを使用して Workbench ノートブックを作成できるようにすることが、Google の考える機械学習の在り方です。Google の Vertex AI プラットフォームでは、カスタムモデルをトレーニングしたり、コンポーネント パイプラインを構築したりすることもできます。さらに、オンライン予測とバッチ予測の両方を実施できます。このコースでは、候補となるユースケースを機械学習で学習できる形に変換する 5 つのフェーズについても説明し、これらのフェーズを省略しないことが重要である理由について論じます。最後に、機械学習によって増幅される可能性のあるバイアスの認識と、それを識別する方法について説明します。

詳細

「BigQuery ML を使用した予測モデリング向けのデータ エンジニアリング」のスキルバッジを獲得できる中級コースを修了すると、 Dataprep by Trifacta を使用した BigQuery へのデータ変換パイプラインの構築、 Cloud Storage、Dataflow、BigQuery を使用した抽出、変換、読み込み(ETL)ワークフローの構築、 BigQuery ML を使用した ML モデルの構築に関するスキルを実証できます。

詳細

「BigQuery でデータ ウェアハウスを構築する」スキルバッジを獲得できる中級コースを修了すると、 データの結合による新しいテーブルの作成、結合のトラブルシューティング、UNION を使用したデータの連結、日付パーティション分割テーブルの作成、 BigQuery での JSON、配列、構造体の操作に関するスキルを証明できます。

詳細

「Google Cloud の ML API 用にデータを準備」コースの入門スキルバッジを獲得できるアクティビティを修了すると、 Dataprep by Trifacta を使用したデータのクリーニング、Dataflow でのデータ パイプラインの実行、Dataproc でのクラスタの作成と Apache Spark ジョブの実行、 Cloud Natural Language API、Google Cloud Speech-to-Text API、Video Intelligence API などの ML API の呼び出しに関するスキルを証明できます。

詳細

Dataflow シリーズの最後のコースでは、Dataflow 運用モデルのコンポーネントを紹介します。パイプラインのパフォーマンスのトラブルシューティングと最適化に役立つツールと手法を検証した後で、Dataflow パイプラインのテスト、デプロイ、信頼性に関するベスト プラクティスについて確認します。最後に、数百人のユーザーがいる組織に対して Dataflow パイプラインを簡単に拡張するためのテンプレートについても確認します。これらの内容を習得することで、データ プラットフォームの安定性を保ち、予期せぬ状況に対する回復力を確保できるようになります。

詳細

Dataflow コースシリーズの 2 回目である今回は、Beam SDK を使用したパイプラインの開発について詳しく説明します。まず、Apache Beam のコンセプトについて復習します。次に、ウィンドウ、ウォーターマーク、トリガーを使用したストリーミング データの処理について説明します。さらに、パイプラインのソースとシンクのオプション、構造化データを表現するためのスキーマ、State API と Timer API を使用してステートフル変換を行う方法について説明します。続いて、パイプラインのパフォーマンスを最大化するためのベスト プラクティスを再確認します。コースの終盤では、Beam でビジネス ロジックを表現するための SQL と DataFrame、および Beam ノートブックを使用してパイプラインを反復的に開発する方法を説明します。

詳細

このコースは、Dataflow を使用したサーバーレスのデータ処理に関する 3 コースシリーズのパート 1 です。この最初のコースでは、始めに Apache Beam とは何か、そして Dataflow とどのように関係しているかを復習します。次に、Apache Beam のビジョンと Beam Portability フレームワークの利点について説明します。Beam Portability フレームワークによって、デベロッパーが好みのプログラミング言語と実行バックエンドを使用できるビジョンが実現します。続いて、Dataflow によってどのように費用を節約しながらコンピューティングとストレージを分離できるか、そして識別ツール、アクセスツール、管理ツールがどのように Dataflow パイプラインと相互に機能するかを紹介します。最後に、Dataflow でそれぞれのユースケースに合った適切なセキュリティ モデルを実装する方法について学習します。

詳細

ML をデータ パイプラインに組み込むと、データから分析情報を抽出する能力を向上できます。このコースでは、Google Cloud でデータ パイプラインに ML を含める複数の方法について説明します。カスタマイズがほとんど、またはまったく必要ない場合のために、このコースでは AutoML について説明します。よりカスタマイズされた ML 機能については、Notebooks と BigQuery の機械学習(BigQuery ML)を紹介します。また、Vertex AI を使用して ML ソリューションを本番環境に導入する方法も説明します。

詳細

この中級コースでは、Google Cloud で堅牢なバッチデータ パイプラインを設計、構築、最適化する方法を学習します。基本的なデータ処理から一歩進んで、大規模なデータ変換と効率的なワークフロー オーケストレーションを確認します。この内容は、タイムリーなビジネス インテリジェンスと重要なレポートの作成に不可欠です。 実装に Apache Beam 用の Dataflow と Apache Spark 向け Serverless(Dataproc Serverless)を使用する実践的な演習を行い、パイプラインの信頼性の確保と効果的な運用を実現するために、データの品質、モニタリング、アラートに関する重要な考慮事項に対処します。データ ウェアハウジング、ETL / ELT、SQL、Python、Google Cloud のコンセプトに関する基本的な知識があることが推奨されます。

詳細

このコースでは、ストリーミング データ パイプラインの構築時に直面する実際の問題を解決するために、実践的な演習を行います。ポイントは、Google Cloud プロダクトを使用して、絶えず流れ続けるデータを効果的に管理することです。

詳細

データレイクとデータ ウェアハウスを使用する従来のアプローチは効果的ですが、特に大規模な企業環境においては欠点があります。このコースでは、データ レイクハウスのコンセプトと、データ レイクハウスの作成に使用する Google Cloud プロダクトについて説明します。レイクハウス アーキテクチャは、オープン スタンダードのデータソースを使用し、データレイクとデータ ウェアハウスの優れた機能を組み合わせて、両者の欠点の多くに対処します。

詳細

このコースでは、データから AI へのライフサイクルをサポートする Google Cloud のビッグデータと ML のプロダクトやサービスを紹介します。また、Google Cloud で Vertex AI を使用してビッグデータ パイプラインと ML モデルを作成する際のプロセス、課題、メリットについて説明します。

詳細

このコースでは、Professional Data Engineer(PDE)認定資格試験に向けた学習計画を作成できます。学習者は、試験の範囲を把握できます。また、試験への準備状況を把握して、個々の学習計画を作成します。

詳細