In this Google DeepMind course you will learn how to prepare text data for language models to process. You will investigate the tools and techniques used to prepare, structure, and represent text data for language models, with a focus on tokenization and embeddings. You will be encouraged to think critically about the decisions behind data preparation, and what biases within the data may be introduced into models. You will analyze trade-offs, learn how to work with vectors and matrices, how meaning is represented in language models. Finally, you will practice designing a dataset ethically using the Data Cards process, ensuring transparency, accountability, and respect for community values in AI development.
In this Google DeepMind course, you will learn the fundamentals of language models and gain a high-level understanding of the machine learning development pipeline. You will consider the strengths and limitations of traditional n-gram models and advanced transformer models. Practical coding labs will enable you to develop insights into how machine learning models work and how they can be used to generate text and identify patterns in language. Through real-world case studies, you will build an understanding around how research engineers operate. Drawing on these insights you will identify problems that you wish to tackle in your own community and consider how to leverage the power of machine learning responsibly to address these problems within a global and local context.
The course aims to train Google technical sales partners on the business value discovery process using proprietary content. Course activities use an external tool (Yoodli). Refer to Yoodli's Terms of Service and Privacy Notice.
Want to learn more about Google Cloud? Grow your Google Cloud knowledge, strengthen your skills to win with customers, and scale your Google Cloud business. Find it here in one handy location.
This course enables system integrators and partners to understand the principles of automated migrations, plan legacy system migrations to Google Cloud leveraging G4 Platform, and execute a trial code conversion.
Terminez le cours d'introduction Créer et gérer des instances AlloyDB pour recevoir un badge démontrant vos compétences dans les domaines suivants : effectuer les principales tâches et opérations AlloyDB, migrer de PostgreSQL vers AlloyDB, administrer une base de données AlloyDB et accélérer les requêtes analytiques à l'aide du moteur de données en colonnes AlloyDB.
Terminez le cours d'introduction Créer et gérer des instances Bigtable pour recevoir un badge démontrant vos compétences dans les domaines suivants : la création d'instances, la conception de schémas, l'interrogation de données et la réalisation de tâches d'administration dans Bigtable, y compris la surveillance des performances et la configuration de l'autoscaling et de la réplication de nœuds.
Terminez le cours d'introduction Créer et gérer des instances Cloud Spanner pour recevoir un badge démontrant vos compétences dans les domaines suivants : créer des instances et des bases de données Cloud Spanner et interagir avec elles ; charger des bases de données Cloud Spanner à l'aide de différentes techniques ; sauvegarder des bases de données Cloud Spanner, définir des schémas et comprendre les plans de requête ; déployer une application Web moderne connectée à une instance Cloud Spanner.
Obtenez le badge de niveau Débutant Créer et gérer des instances Cloud SQL pour PostgreSQL pour démontrer vos compétences en matière de migration, de configuration et de gestion des instances et bases de données Cloud SQL pour PostgreSQL.
Ce cours présente Vertex AI Studio, un outil permettant d'interagir avec des modèles d'IA générative, de prototyper des idées commerciales et de les envoyer en production. Au moyen d'un cas d'utilisation immersif, de leçons captivantes et d'un atelier pratique, vous allez découvrir le cycle de vie de la requête au produit. Vous apprendrez également à utiliser Vertex AI Studio pour les applications multimodales Gemini, la conception de requêtes, le prompt engineering (ingénierie des requêtes) et le réglage de modèles. L'objectif est de vous permettre d'exploiter tout le potentiel de l'IA générative dans vos projets avec Vertex AI Studio.
Ce cours de micro-apprentissage, qui s'adresse aux débutants, explique ce qu'est l'IA générative, décrit à quoi elle sert et souligne ce qui la distingue des méthodes de machine learning traditionnel. Il présente aussi les outils Google qui vous aideront à développer votre propre application d'IA générative.
This course introduces you to the world of reliable deep learning, a critical discipline focused on developing machine learning models that not only make accurate predictions but also understand and communicate their own uncertainty. You'll learn how to create AI systems that are trustworthy, robust, and adaptable, particularly in high-stakes scenarios where errors can have significant consequences.
Terminez le cours d'introduction Migrer des données MySQL vers Cloud SQL à l’aide de Database Migration Service pour recevoir un badge démontrant vos compétences dans les domaines suivants : migration de données MySQL vers Cloud SQL à l'aide de différents types de jobs et différentes options de connectivité disponibles dans Database Migration Service et migration de données utilisateur MySQL lors de l'exécution de jobs Database Migration Service.
This course is intended to give architects, engineers, and developers the skills required to help enterprise customers architect, plan, execute, and test database migration projects. Through a combination of presentations, demos, and hands-on labs participants move databases to Google Cloud while taking advantage of various services. This course covers how to move on-premises, enterprise databases like SQL Server to Google Cloud (Compute Engine and Cloud SQL) and Oracle to Google Cloud bare metal.
In this course, you learn to analyze and choose the right database for your needs, to effectively develop applications on Google Cloud. You explore relational and NoSQL databases, dive into Cloud SQL, AlloyDB, and Spanner, and learn how to align database strengths with your application requirements, including those of generative AI. Gain hands-on experience configuring Vector Search and migrating applications to the cloud.
"Concepts fondamentaux de Google Cloud : infrastructure de base" présente les concepts et les termes à connaître pour utiliser Google Cloud. À travers des vidéos et des ateliers pratiques, il décrit et compare la plupart des services Google Cloud de calcul et de stockage, ainsi que des outils importants de gestion des ressources et des règles.
Ce cours présente une approche pratique du workflow de ML avec une étude de cas dans laquelle une équipe est confrontée à plusieurs exigences métier et cas d'utilisation de ML. Cette équipe doit comprendre quels outils sont nécessaires pour gérer et gouverner les données, et trouver la meilleure approche pour les prétraiter. On présente à cette équipe trois options de création de modèles de ML pour deux cas d'utilisation spécifiques. Ce cours explique pourquoi l'équipe tire parti des avantages d'AutoML, de BigQuery ML ou de l'entraînement personnalisé pour atteindre ses objectifs.
Quelles sont les bonnes pratiques pour implémenter le machine learning sur Google Cloud ? En quoi consiste la plate-forme Vertex AI et comment pouvez-vous l'utiliser pour créer, entraîner et déployer rapidement des modèles de machine learning AutoML sans écrire une seule ligne de code ? Qu'est-ce que le machine learning et quels types de problèmes permet-il de résoudre ? Google aborde le machine learning d'une façon particulière, qui consiste à fournir une plate-forme unifiée pour les ensembles de données gérés, ainsi qu'un magasin de caractéristiques et un moyen de créer, d'entraîner et de déployer des modèles de machine learning sans écrire une seule ligne de code. Il s'agit également de permettre aux utilisateurs d'étiqueter les données et de créer des notebooks Workbench à l'aide de frameworks tels que TensorFlow, Scikit Learn, Pytorch et R. Avec notre plate-forme Vertex AI, il est également possible d'entraîner des modèles personnalisés, de créer des pipelines de composants, …
Terminez le cours intermédiaire Ingénierie des données pour la modélisation prédictive avec BigQuery ML pour recevoir un badge démontrant vos compétences dans les domaines suivants : la création de pipelines de transformation des données dans BigQuery avec Dataprep by Trifacta ; l'utilisation de Cloud Storage, Dataflow et BigQuery pour créer des workflows ETL (Extract, Transform and Load) ; et la création de modèles de machine learning avec BigQuery ML.
Terminez le cours intermédiaire Créer un entrepôt de données avec BigQuery pour recevoir un badge démontrant vos compétences dans les domaines suivants : la jointure de données pour créer des tables, la résolution des problèmes liés aux jointures, l'ajout de données avec des unions, la création de tables partitionnées par date, et l'utilisation d'objets JSON, ARRAY et STRUCT dans BigQuery.
Terminez le cours d'introduction Préparer des données pour les API de ML sur Google Cloud pour recevoir un badge démontrant vos compétences dans les domaines suivants : le nettoyage des données avec Dataprep by Trifacta, l'exécution de pipelines de données dans Dataflow, la création de clusters et l'exécution de jobs Apache Spark dans Dataproc, et l'appel d'API de ML comme l'API Cloud Natural Language, l'API Google Cloud Speech-to-Text et l'API Video Intelligence.
Dans le dernier volet de la série de cours sur Dataflow, nous allons présenter les composants du modèle opérationnel de Dataflow. Nous examinerons les outils et techniques permettant de résoudre les problèmes et d'optimiser les performances des pipelines. Nous passerons ensuite en revue les bonnes pratiques en matière de test, de déploiement et de fiabilité pour les pipelines Dataflow. Nous terminerons par une présentation des modèles, qui permettent de faire évoluer facilement les pipelines Dataflow pour les adapter aux organisations comptant des centaines d'utilisateurs. Ces leçons vous aideront à vous assurer que votre plate-forme de données est stable et résiliente face aux imprévus.
Dans ce deuxième volet de la série de cours sur Dataflow, nous allons nous intéresser de plus près au développement de pipelines à l'aide du SDK Beam. Nous allons commencer par passer en revue les concepts d'Apache Beam. Nous allons ensuite parler du traitement des données par flux à l'aide de fenêtres, de filigranes et de déclencheurs. Nous passerons ensuite aux options de sources et de récepteurs dans vos pipelines, aux schémas pour présenter vos données structurées, et nous verrons comment effectuer des transformations avec état à l'aide des API State et Timer. Nous aborderons ensuite les bonnes pratiques qui vous aideront à maximiser les performances de vos pipelines. Vers la fin du cours, nous présentons le langage SQL et les DataFrames pour représenter votre logique métier dans Beam, et nous expliquons comment développer des pipelines de manière itérative à l'aide des notebooks Beam.
Ce cours est le premier d'une série en trois volets sur le traitement des données sans serveur avec Dataflow. Dans ce premier cours, nous allons commencer par rappeler ce qu'est Apache Beam et sa relation avec Dataflow. Ensuite, nous aborderons la vision d'Apache Beam et les avantages de son framework de portabilité, qui permet aux développeurs d'utiliser le langage de programmation et le backend d'exécution de leur choix. Nous vous montrerons aussi comment séparer le calcul du stockage et économiser de l'argent grâce à Dataflow, puis nous examinerons les interactions entre les outils de gestion de l'identification et des accès avec vos pipelines Dataflow. Enfin, nous verrons comment implémenter le modèle de sécurité adapté à votre cas d'utilisation sur Dataflow.
Intégrer le machine learning à des pipelines de données renforce la capacité à dégager des insights des données. Ce cours passera en revue plusieurs façons d'intégrer le machine learning à des pipelines de données sur Google Cloud. Vous découvrirez AutoML pour les cas ne nécessitant que peu de personnalisation (voire aucune), ainsi que Notebooks et BigQuery ML pour les situations qui requièrent des capacités de machine learning plus adaptées. Enfin, vous apprendrez à utiliser des solutions de machine learning en production avec Vertex AI.
Dans ce cours de niveau intermédiaire, vous apprendrez à concevoir, créer et optimiser des pipelines de données en batch robustes sur Google Cloud. Au-delà des bases de la gestion des données, vous explorerez les transformations de données à grande échelle et l'orchestration efficace des workflows, essentielles pour l'informatique décisionnelle et les rapports critiques. Vous vous entraînerez à utiliser Dataflow pour Apache Beam et Serverless pour Apache Spark (Dataproc Serverless) pour l'implémentation, et vous aborderez des considérations importantes concernant la qualité des données, la surveillance et les alertes pour assurer la fiabilité des pipelines et l'excellence opérationnelle. Il est recommandé d'avoir des connaissances de base sur l'entreposage de données, les processus ETL/ELT, SQL, Python et les concepts de Google Cloud.
Dans ce cours, vous allez vous exercer à résoudre des problèmes concrets rencontrés lors de la création de pipelines de flux données. L'objectif principal est de gérer des données continues et illimitées avec les produits Google Cloud.
Bien que les approches traditionnelles utilisant des lacs de données et des entrepôts de données puissent être efficaces, elles présentent des inconvénients, en particulier dans les grands environnements d'entreprise. Ce cours présente le concept de data lakehouse et les produits Google Cloud utilisés pour en créer un. Une architecture de lakehouse utilise des sources de données basées sur des normes ouvertes et combine les meilleures fonctionnalités des lacs et des entrepôts de données, ce qui permet de pallier de nombreuses lacunes.
Ce cours présente les produits et services Google Cloud pour le big data et le machine learning compatibles avec le cycle de vie "des données à l'IA". Il explore les processus, défis et avantages liés à la création d'un pipeline de big data et de modèles de machine learning avec Vertex AI sur Google Cloud.
Ce cours a pour objectif d'aider les participants à créer un plan de formation pour l'examen de certification Professional Data Engineer. Les participants découvriront l'étendue et le champ d'application des domaines abordés lors de l'examen, puis évalueront leur niveau de préparation à l'examen et créeront leur propre plan de formation.