Unirse Acceder

Francisco Colomer

Miembro desde 2023

Liga de Diamantes

43048 puntos
Google DeepMind: 02 Represent Your Language Data Earned ene 9, 2026 EST
Google DeepMind: 01 Build Your Own Small Language Model Earned ene 4, 2026 EST
Discover Business Value for Customers Earned dic 31, 2025 EST
Partner Pre-Sales Readiness Training Earned dic 26, 2025 EST
Modernizing Mainframe Applications with Google Cloud Earned dic 22, 2025 EST
Crea y administra instancias de AlloyDB Earned dic 19, 2025 EST
Crea y administra instancias de Bigtable Earned dic 17, 2025 EST
Crea y administra instancias de Cloud Spanner Earned dic 15, 2025 EST
Crea y administra instancias de Cloud SQL para PostgreSQL Earned dic 11, 2025 EST
Introducción a Vertex AI Studio Earned dic 5, 2025 EST
Introducción a la IA generativa Earned dic 4, 2025 EST
Introduction to Reliable Deep Learning Earned nov 30, 2025 EST
Migra datos de MySQL a Cloud SQL con Database Migration Service Earned nov 27, 2025 EST
Enterprise Database Migration Earned nov 25, 2025 EST
Select a Google Cloud Database for Your Applications Earned sep 24, 2025 EDT
Aspectos básicos de Google Cloud: Infraestructura principal Earned jul 26, 2025 EDT
Aprendizaje automático en empresas Earned sep 29, 2024 EDT
How Google Does Machine Learning - Español Earned may 29, 2024 EDT
Ingeniería de datos para crear modelos predictivos con BigQuery ML Earned nov 15, 2023 EST
Crea un almacén de datos con BigQuery Earned nov 14, 2023 EST
Prepara datos para las APIs de AA en Google Cloud Earned nov 13, 2023 EST
Procesamiento de datos sin servidores con Dataflow: Operaciones Earned nov 9, 2023 EST
Procesamiento de datos sin servidores con Dataflow: Desarrolla canalizaciones Earned nov 4, 2023 EDT
Procesamiento de datos sin servidores con Dataflow: Fundamentos Earned oct 26, 2023 EDT
Smart Analytics, Machine Learning, and AI on Google Cloud - Español Earned oct 23, 2023 EDT
Crea canalizaciones de datos por lotes en Google Cloud Earned oct 22, 2023 EDT
Crea canalizaciones de datos de transmisión en Google Cloud Earned oct 20, 2023 EDT
Crea data lakes y almacenes de datos en Google Cloud Earned oct 14, 2023 EDT
Google Cloud Big Data and Machine Learning Fundamentals - Español Earned oct 12, 2023 EDT
Preparación para el proceso de certificación Professional Data Engineer Earned oct 4, 2023 EDT

In this Google DeepMind course you will learn how to prepare text data for language models to process. You will investigate the tools and techniques used to prepare, structure, and represent text data for language models, with a focus on tokenization and embeddings. You will be encouraged to think critically about the decisions behind data preparation, and what biases within the data may be introduced into models. You will analyze trade-offs, learn how to work with vectors and matrices, how meaning is represented in language models. Finally, you will practice designing a dataset ethically using the Data Cards process, ensuring transparency, accountability, and respect for community values in AI development.

Más información

In this Google DeepMind course, you will learn the fundamentals of language models and gain a high-level understanding of the machine learning development pipeline. You will consider the strengths and limitations of traditional n-gram models and advanced transformer models. Practical coding labs will enable you to develop insights into how machine learning models work and how they can be used to generate text and identify patterns in language. Through real-world case studies, you will build an understanding around how research engineers operate. Drawing on these insights you will identify problems that you wish to tackle in your own community and consider how to leverage the power of machine learning responsibly to address these problems within a global and local context.

Más información

The course aims to train Google technical sales partners on the business value discovery process using proprietary content. Course activities use an external tool (Yoodli). Refer to Yoodli's Terms of Service and Privacy Notice.

Más información

Want to learn more about Google Cloud? Grow your Google Cloud knowledge, strengthen your skills to win with customers, and scale your Google Cloud business. Find it here in one handy location.

Más información

This course enables system integrators and partners to understand the principles of automated migrations, plan legacy system migrations to Google Cloud leveraging G4 Platform, and execute a trial code conversion.

Más información

Completa el curso introductorio con insignia de habilidad Crea y administra instancias de AlloyDB y demuestra tus habilidades para completar las siguientes actividades: realizar operaciones y tareas básicas de AlloyDB, migrar a AlloyDB desde PostgreSQL, administrar una base de datos de AlloyDB y acelerar las consultas analíticas con el motor de columnas de AlloyDB.

Más información

Completa la insignia de habilidad introductoria Crea y administra instancias de Bigtable y demuestra tus habilidades para realizar las siguientes actividades: crear instancias, diseñar esquemas, consultar datos y realizar tareas administrativas en Bigtable, como supervisar el rendimiento y configurar el escalado automático y la replicación de nodos.

Más información

Completa el curso introductorio con insignia de habilidad Crea y administra instancias de Cloud Spanner y demuestra tus habilidades para realizar las siguientes actividades: crear instancias y bases de datos de Cloud Spanner e interactuar con ellas cargar bases de datos de Cloud Spanner con diversas técnicas crear copias de seguridad de bases de datos de Cloud Spanner, definir esquemas y comprender planes de consulta implementar una app web moderna conectada a una instancia de Cloud Spanner.

Más información

Completa la insignia de habilidad introductoria Crea y administra instancias de Cloud SQL para PostgreSQL y demuestra tus habilidades para migrar, configurar y administrar instancias y bases de datos de Cloud SQL para PostgreSQL.

Más información

En este curso, se presenta Vertex AI Studio, una herramienta para interactuar con modelos de IA generativa, crear prototipos de ideas de negocio y llevarlas a producción. A través de un caso de uso envolvente, lecciones atractivas y un lab práctico, explorarás el ciclo de vida desde la instrucción hasta el producto y aprenderás cómo aprovechar Vertex AI Studio para aplicaciones multimodales de Gemini, diseño de instrucciones, ingeniería de instrucciones y ajuste de modelos. El objetivo es permitirte desbloquear el potencial de la IA generativa en tus proyectos con Vertex AI Studio.

Más información

Este es un curso introductorio de microaprendizaje destinado a explicar qué es la IA generativa, cómo se utiliza y en qué se diferencia de los métodos de aprendizaje automático tradicionales. También abarca las herramientas de Google para ayudarte a desarrollar tus propias aplicaciones de IA generativa.

Más información

This course introduces you to the world of reliable deep learning, a critical discipline focused on developing machine learning models that not only make accurate predictions but also understand and communicate their own uncertainty. You'll learn how to create AI systems that are trustworthy, robust, and adaptable, particularly in high-stakes scenarios where errors can have significant consequences.

Más información

Completa el curso introductorio con insignia de habilidad Migra datos de MySQL a Cloud SQL con Database Migration Service para demostrar tus habilidades en lo siguiente: migrar datos de MySQL a Cloud SQL usando diferentes tipos de trabajos y opciones de conectividad disponibles en Database Migration Service y migrar datos del usuario de MySQL cuando se ejecutan trabajos de Database Migration Service.

Más información

This course is intended to give architects, engineers, and developers the skills required to help enterprise customers architect, plan, execute, and test database migration projects. Through a combination of presentations, demos, and hands-on labs participants move databases to Google Cloud while taking advantage of various services. This course covers how to move on-premises, enterprise databases like SQL Server to Google Cloud (Compute Engine and Cloud SQL) and Oracle to Google Cloud bare metal.

Más información

In this course, you learn to analyze and choose the right database for your needs, to effectively develop applications on Google Cloud. You explore relational and NoSQL databases, dive into Cloud SQL, AlloyDB, and Spanner, and learn how to align database strengths with your application requirements, including those of generative AI. Gain hands-on experience configuring Vector Search and migrating applications to the cloud.

Más información

Aspectos básicos de Google Cloud: Infraestructura principal presenta conceptos y terminología importantes para trabajar con Google Cloud. Mediante videos y labs prácticos, en este curso se presentan y comparan muchos de los servicios de procesamiento y almacenamiento de Google Cloud, junto con importantes recursos y herramientas de administración de políticas.

Más información

En este curso, se aplica un enfoque real en el flujo de trabajo del AA a través de un caso de éxito. Un equipo de AA trabaja con varios requisitos empresariales y casos de uso de AA. El equipo debe comprender las herramientas necesarias para la administración de los datos y considerar el mejor enfoque para su procesamiento previo. Al equipo se le presentan tres opciones con las que puede crear modelos de AA para dos casos de uso. En el curso, se explica por qué el equipo usará AutoML, BigQuery ML o entrenamiento personalizado para lograr sus objetivos.

Más información

¿Cuáles son las prácticas recomendadas para implementar el aprendizaje automático en Google Cloud? ¿Qué es Vertex AI y cómo se puede utilizar la plataforma para crear, entrenar e implementar rápidamente modelos de aprendizaje automático de AutoML sin escribir una sola línea de código? ¿Qué es el aprendizaje automático? ¿Qué tipos de problemas puede solucionar? Google considera que el aprendizaje automático es diferente: se trata de proporcionar una plataforma unificada para conjuntos de datos administrados, un almacén de atributos, una forma de crear, entrenar e implementar modelos de aprendizaje automático sin escribir una sola línea de código, así como proporcionar la capacidad de etiquetar datos y crear notebooks de Workbench utilizando frameworks como TensorFlow, SciKit-learn, Pytorch, R y otros. Vertex AI Platform también ofrece la posibilidad de entrenar modelos personalizados, crear canalizaciones de componentes y realizar predicciones en línea y por lotes. Además, analiza…

Más información

Obtén la insignia de habilidad intermedia Ingeniería de datos para crear modelos predictivos con BigQuery ML y demuestra tus capacidades para crear canalizaciones de transformación de datos en BigQuery con Dataprep de Trifacta; usar Cloud Storage, Dataflow y BigQuery para crear flujos de trabajo de extracción, transformación y carga (ETL), y crear modelos de aprendizaje automático con BigQuery ML.

Más información

Completa la insignia de habilidad intermedia Crea un almacén de datos con BigQuery para demostrar tus habilidades para realizar las siguientes actividades: unir datos para crear tablas nuevas, solucionar problemas de uniones, agregar datos a uniones, crear tablas particionadas por fecha, y trabajar con JSON, arrays y structs en BigQuery.

Más información

Completa la insignia de habilidad introductoria Prepara datos para las APIs de AA en Google Cloud y demuestra tus habilidades para realizar las siguientes actividades: limpiar datos con Dataprep de Trifacta, ejecutar canalizaciones de datos en Dataflow, crear clústeres y ejecutar trabajos de Apache Spark en Dataproc y llamar a APIs de AA, como la API de Cloud Natural Language, la API de Google Cloud Speech-to-Text y la API de Video Intelligence.

Más información

En esta última parte de la serie de cursos de Dataflow, presentaremos los componentes del modelo operativo de Dataflow. Examinaremos las herramientas y técnicas que permiten solucionar problemas y optimizar el rendimiento de las canalizaciones. Luego, revisaremos las prácticas recomendadas de las pruebas, la implementación y la confiabilidad en relación con las canalizaciones de Dataflow. Concluiremos con una revisión de las plantillas, que facilitan el ajuste de escala de las canalizaciones de Dataflow para organizaciones con cientos de usuarios. Estas clases asegurarán que su plataforma de datos sea estable y resiliente ante circunstancias inesperadas.

Más información

En esta segunda parte de la serie de cursos sobre Dataflow, analizaremos en profundidad el desarrollo de canalizaciones con el SDK de Beam. Comenzaremos con un repaso de los conceptos de Apache Beam. A continuación, analizaremos el procesamiento de datos de transmisión con ventanas, marcas de agua y activadores. Luego, revisaremos las opciones de fuentes y receptores en sus canalizaciones, los esquemas para expresar datos estructurados y cómo realizar transformaciones con estado mediante las API de State y de Timer. Después, revisaremos las prácticas recomendadas que ayudan a maximizar el rendimiento de las canalizaciones. Al final del curso, presentaremos SQL y Dataframes para representar su lógica empresarial en Beam y cómo desarrollar canalizaciones de forma iterativa con notebooks de Beam.

Más información

Este curso corresponde a la 1ª parte de una serie de 3 cursos llamada Procesamiento de datos sin servidores con Dataflow. Para comenzar, en el primer curso haremos un repaso de qué es Apache Beam y cómo se relaciona con Dataflow. Luego, hablaremos sobre la visión de Apache Beam y los beneficios que ofrece su framework de portabilidad. Dicho framework hace posible que un desarrollador pueda usar su lenguaje de programación favorito con su backend de ejecución preferido. Después, le mostraremos cómo Dataflow le permite separar el procesamiento y el almacenamiento y, a la vez, ahorrar dinero. También le explicaremos cómo las herramientas de identidad, acceso y administración interactúan con sus canalizaciones de Dataflow. Por último, veremos cómo implementar el modelo de seguridad adecuado en Dataflow según su caso de uso.

Más información

La incorporación del aprendizaje automático en las canalizaciones de datos aumenta la capacidad para extraer estadísticas de los datos. En este curso, veremos formas de incluir el aprendizaje automático en las canalizaciones de datos en Google Cloud. Para una personalización escasa o nula, en el curso se aborda AutoML. Para obtener más capacidades de aprendizaje automático a medida, el curso presenta Notebooks y BigQuery Machine Learning (BigQuery ML). Además, en este curso se aborda cómo llevar a producción soluciones de aprendizaje automático con Vertex AI.

Más información

En este curso intermedio, aprenderás a diseñar, crear y optimizar canalizaciones de datos por lotes sólidas en Google Cloud. Más allá del manejo de datos fundamental, explorarás las transformaciones de datos a gran escala y la organización eficiente de flujos de trabajo, lo que es primordial para la inteligencia empresarial oportuna y los informes esenciales. Obtén experiencia práctica con Dataflow para Apache Beam y Serverless for Apache Spark (Dataproc Serverless) para la implementación, y aborda consideraciones cruciales respecto de la calidad de los datos, la supervisión y las alertas para garantizar la confiabilidad de la canalización y la excelencia operativa. Se recomienda tener conocimientos básicos sobre almacenamiento de datos, ETL/ELT, SQL, Python y conceptos de Google Cloud.

Más información

En este curso, adquirirás experiencia práctica para superar los desafíos del mundo real que se presentan cuando se crean canalizaciones de datos de transmisión. El enfoque principal es administrar datos continuos y no delimitados con los productos de Google Cloud.

Más información

Si bien los enfoques tradicionales de usar data lakes y almacenes de datos pueden ser eficaces, tienen deficiencias, en particular en entornos empresariales grandes. En este curso, se presenta el concepto del data lakehouse y los productos de Google Cloud que se usan para crear uno. Una arquitectura de lakehouse usa fuentes de datos de estándares abiertos y combina las mejores funciones de los data lakes y los almacenes de datos, lo que aborda muchas de sus deficiencias.

Más información

En este curso, aprenderás sobre los productos y servicios de macrodatos y aprendizaje automático de Google Cloud involucrados en el ciclo de vida de datos a IA. También explorarás los procesos, los desafíos y los beneficios de crear una canalización de macrodatos y modelos de aprendizaje automático con Vertex AI en Google Cloud.

Más información

Este curso ayuda a los participantes a crear un plan de estudio para el examen de certificación de PDE (Professional Data Engineer). Los alumnos conocerán la amplitud y el alcance de los dominios que se incluyen en el examen. Además, evaluarán su nivel de preparación para el examen y crearán un plan de estudio personal.

Más información