Moreira Pereira Ronaldo
メンバー加入日: 2024
ダイヤモンド リーグ
26865 ポイント
メンバー加入日: 2024
これは、5 つのコースからなる「Google Cloud データ アナリティクス認定証」プログラムの 1 つ目のコースです。このコースでは、クラウドデータ分析とは何かについて、そしてデータの取得、保存、処理、可視化に関連するクラウド データ アナリストの役割と責任について学びます。受講者は、Google Cloud ベースのツール(BigQuery や Cloud Storage など)のアーキテクチャと、それらを使用してデータを効果的に整理、提示し、レポートを作成する方法を確認します。
これは、「Google Cloud データ アナリティクス認定証」プログラムを構成する 5 つのコースのうちの 4 つ目です。このコースでは、クラウドでのデータ可視化における 5 つの主要な段階(ストーリーテリング、計画、データ探索、ビジュアリゼーションの構築、他のユーザーとのデータ共有)のスキルを開発することに重点を置いています。さらに、UI / UX スキルを使用して、クラウドネイティブで効果的な可視化のワイヤーフレームを実際に作成するとともに、クラウドネイティブのデータ可視化ツールを使用して、データセットの探索、レポートの作成のほか、意思決定とコラボレーションを促進するダッシュボードの構築を行います。
これは、5 つのコースからなる「Google Cloud データ アナリティクス認定証」プログラムの 5 つ目のコースです。このコースでは、コース 1~4 で学んだ基礎知識とスキルを組み合わせて応用することで、データ ライフサイクル全体に焦点を当てたハンズオン キャップストーン プロジェクトに取り組みます。クラウドベースのツールを使用して、データの分析情報を効果的に取得、保存、処理、分析、可視化し、明確に伝えるための実践を行います。このコースの終了までに、プロジェクトを完了し、複数のソースから得られたデータを効果的に構造化して、さまざまな関係者にソリューションを提示し、クラウドベースのソフトウェアを使用してデータ分析情報を可視化する能力を実証します。また、履歴書を更新し、面接の練習を行って、就職活動や面接に備えることができます。
これは、「Google Cloud データ アナリティクス認定証」の 5 つのコースのうちの 2 つ目です。このコースでは、データの構造化および整理の方法を確認します。また、BigQuery、Google Cloud Storage、DataProc などのデータ レイクハウス アーキテクチャやクラウド コンポーネントについて実践的な経験を積み、大規模なデータセットを効率的に保存、分析、処理できるようになります。
This is the third of five courses in the Google Cloud Data Analytics Certificate. In this course, you’ll begin by getting an overview of the data journey, from collection to insights. You’ll then learn how to use SQL to transform raw data into a usable format. Next, you’ll learn how to transform high volumes of data with a data pipeline. Finally, you’ll gain experience applying transformation strategies to real data sets to solve business needs.
「Google Cloud での ML の API の使用 」コースを修了して、上級スキルバッジを獲得しましょう。このコースでは、ML と AI テクノロジーを活用する 3 つの API(Cloud Vision API、Cloud Translation API、Cloud Natural Language API) の基本機能について学習します。
This is the third of five courses in the Google Cloud Data Analytics Certificate. In this course, you’ll begin by getting an overview of the data journey, from collection to insights. You’ll then learn how to use SQL to transform raw data into a usable format. Next, you’ll learn how to transform high volumes of data with a data pipeline. Finally, you’ll gain experience applying transformation strategies to real data sets to solve business needs.
This is the second of five courses in the Google Cloud Data Analytics Certificate. In this course, you’ll explore how data is structured and organized. You’ll gain hands-on experience with the data lakehouse architecture and cloud components like BigQuery, Google Cloud Storage, and DataProc to efficiently store, analyze, and process large datasets.
This is the fifth of five courses in the Google Cloud Data Analytics Certificate. In this course, you’ll combine and apply the foundational knowledge and skills from courses 1-4 in a hands-on Capstone project that focuses on the full data lifecycle project. You’ll practice using cloud-based tools to acquire, store, process, analyze, visualize, and communicate data insights effectively. By the end of the course, you’ll have completed a project demonstrating their proficiency in effectively structuring data from multiple sources, presenting solutions to varied stakeholders, and visualizing data insights using cloud-based software. You’ll also update your resume and practice interview techniques to help prepare for applying and interviewing for jobs.
This is the fourth of five courses in the Google Cloud Data Analytics Certificate. In this course, you’ll focus on developing skills in the five key stages of visualizing data in the cloud: storytelling, planning, exploring data, building visualizations, and sharing data with others. You’ll also gain experience using UI/UX skills to wireframe impactful, cloud-native visualizations and work with cloud-native data visualization tools to explore datasets, create reports, and build dashboards that drive decisions and foster collaboration.
This is the first of five courses in the Google Cloud Data Analytics Certificate. In this course, you’ll define the field of cloud data analysis and describe roles and responsibilities of a cloud data analyst as they relate to data acquisition, storage, processing, and visualization. You’ll explore the architecture of Google Cloud-based tools, like BigQuery and Cloud Storage, and how they are used to effectively structure, present, and report data.
安全な Google Cloud ネットワークの構築コースを修了してスキルバッジを獲得しましょう。このコースでは、Google Cloud でアプリケーションを ビルド、スケール、保護するための複数のネットワーク関連リソースについて学習します。
「Google Cloud の ML API 用にデータを準備」コースの入門スキルバッジを獲得できるアクティビティを修了すると、 Dataprep by Trifacta を使用したデータのクリーニング、Dataflow でのデータ パイプラインの実行、Dataproc でのクラスタの作成と Apache Spark ジョブの実行、 Cloud Natural Language API、Google Cloud Speech-to-Text API、Video Intelligence API などの ML API の呼び出しに関するスキルを証明できます。
「Google Cloud におけるアプリ開発環境の設定」コースを完了すると、スキルバッジを獲得できます。このコースでは、 Cloud Storage、Identity and Access Management、Cloud Functions、Pub/Sub のテクノロジーの基本機能を使用して、ストレージ中心のクラウド インフラストラクチャを構築し接続する方法を学びます。
「Compute Engine での Cloud Load Balancing の実装」入門コースを修了してスキルバッジを獲得すると、次のスキルを実証できます: Compute Engine における仮想マシンの作成とデプロイ、 ネットワーク ロードバランサとアプリケーション ロードバランサの構成。
Google Cloud コンピューティングの基礎コースは、クラウド コンピューティングのバックグラウンドや経験がほとんどまたはまったくない方を対象としています。クラウドの基礎、ビッグデータ、ML の中核となるコンセプトと、Google Cloud を活用できる場面や方法の概要を示します。 この一連のコースを修了すると、これらのコンセプトについて明確に理解し、実践的なスキルを実証できます。 このコースは、次の順で完了する必要があります。 1. Google Cloud コンピューティングの基礎: クラウド コンピューティングの基本 2. Google Cloud コンピューティングの基礎: Google Cloud のインフラストラクチャ 3. Google Cloud コンピューティングの基礎: Google Cloud でのネットワーキングとセキュリティ 4. Google Cloud コンピューティングの基礎: Google Cloud のデータ、ML、AI このシリーズの最後のコースでは、マネージド ビッグデータ サービス、ML とその価値、スキルバッジを獲得して Google Cloud に関するスキルセットをさらに実証する方法について説明します。
Google Cloud コンピューティングの基礎コースは、クラウド コンピューティングのバックグラウンドや経験がほとんどまたはまったくない方を対象としています。クラウドの基礎、ビッグデータ、ML の中核となるコンセプトと、Google Cloud を活用できる場面や方法の概要を示します。 この一連のコースを修了すると、これらのコンセプトについて明確に理解し、実践的なスキルを実証できます。 このコースは、次の順で完了する必要があります。 1. Google Cloud コンピューティングの基礎: クラウド コンピューティングの基本 2. Google Cloud コンピューティングの基礎: Google Cloud のインフラストラクチャGoogle Cloud コンピューティングの基礎: Google Cloud でのネットワーキングとセキュリティ 4. Google Cloud コンピューティングの基礎: Google Cloud のデータ、ML、AI この 3 番目のコースでは、クラウドの自動化、管理ツール、安全なネットワークの構築について説明します。
Google Cloud コンピューティングの基礎コースは、クラウド コンピューティングのバックグラウンドや経験がほとんどまたはまったくない方を対象としています。クラウドの基礎、ビッグデータ、ML の中核となるコンセプトと、Google Cloud を活用できる場面や方法の概要を示します。 この一連のコースを修了すると、これらのコンセプトについて明確に理解し、実践的なスキルを実証できます。 このコースは、次の順で完了する必要があります。 1. Google Cloud コンピューティングの基礎: クラウド コンピューティングの基本 2. Google Cloud コンピューティングの基礎: Google Cloud のインフラストラクチャ 3. Google Cloud コンピューティングの基礎: Google Cloud でのネットワーキングとセキュリティ 4. Google Cloud コンピューティングの基礎: Google Cloud のデータ、ML、AI
Google Cloud コンピューティングの基礎コースは、クラウド コンピューティングのバックグラウンドや経験がほとんどまたはまったくない方を対象としています。クラウドの基礎、ビッグデータ、ML の中核となるコンセプトと、Google Cloud を活用できる場面や方法の概要を示します。 この一連のコースを修了すると、これらのコンセプトについて明確に理解し、実践的なスキルを実証できます。 このコースは、次の順で完了する必要があります。 1. Google Cloud コンピューティングの基礎: クラウド コンピューティングの基本 2. Google Cloud コンピューティングの基礎: Google Cloud のインフラストラクチャ 3. Google Cloud コンピューティングの基礎: Google Cloud でのネットワーキングとセキュリティ 4. Google Cloud コンピューティングの基礎: Google Cloud のデータ、ML、AI この最初のコースでは、クラウド コンピューティングの概要、Google Cloud の使用方法、さまざまなコンピューティング オプションについて説明します。