Dhani Setiaji
회원 가입일: 2020
실버 리그
5100포인트
회원 가입일: 2020
초급 Google Cloud에서 ML API용으로 데이터 준비하기 기술 배지를 완료하여 Dataprep by Trifacta로 데이터 정리, Dataflow에서 데이터 파이프라인 실행, Dataproc에서 클러스터 생성 및 Apache Spark 작업 실행, Cloud Natural Language API, Google Cloud Speech-to-Text API, Video Intelligence API를 포함한 ML API 호출과 관련된 기술 역량을 입증하세요.
안전한 Google Cloud 네트워크 빌드 과정을 완료하여 기술 배지를 획득하세요. 이 과정에서는 Google Cloud에서 애플리케이션을 빌드, 확장, 보호하는 데 필요한 다양한 네트워킹 관련 리소스에 대해 배울 수 있습니다.
Earn a skill badge by completing the Build Interactive Apps with Google Assistant quest, where you will learn how to build Google Assistant applications, including how to: create an Actions project, integrate Dialogflow with an Actions project, test your application with Actions simulator, build an Assistant application with flash cards template, integrate customer MP3 files with your Assistant application, add Cloud Translation API to your Assistant application, and use APIs and integrate them into your applications. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete the skill badge quest, and final assessment challenge lab, to receive a digital badge that you can share with your network.
Earn the introductory skill badge by completing the Build a Website on Google Cloud skill badge course. This course is based on the Get Cooking in Cloud series and covers`:`Deploying a website on Cloud RunHosting a web app on Compute EngineCreating, deploying, and scaling your website on Google Kubernetes EngineMigrating from a monolithic application to a microservices architecture using Cloud Build
중급 BigQuery ML을 사용한 예측 모델링을 위한 데이터 엔지니어링 기술 배지를 획득하여 Dataprep by Trifact로 데이터 변환 파이프라인을 BigQuery에 빌드, Cloud Storage, Dataflow, BigQuery를 사용한 ETL(추출, 변환, 로드) 워크플로 빌드, BigQuery ML을 사용하여 머신러닝 모델을 빌드하는 기술 역량을 입증할 수 있습니다.
중급 Google Cloud에서 DevOps 워크플로 구현 기술 배지 과정을 완료하여 Cloud Source Repositories로 Git 저장소 만들기, Google Kubernetes Engine(GKE)에서 배포 실행, 관리, 확장, 그리고 컨테이너 이미지 빌드 및 GKE로의 배포를 자동화하는 CI/CD 파이프라인 설계 등에 관한 기술을 입증하세요. 기술 배지는 Google Cloud 제품 및 서비스 숙련도에 따라 Google Cloud에서 독점적으로 발급하는 디지털 배지로, 기술 배지 과정을 통해 대화형 실습 환경에서 지식을 적용하는 역량을 테스트할 수 있습니다. 이 기술 배지 과정과 최종 평가 챌린지 실습을 완료하면 네트워크에 공유할 수 있는 기술 배지를 받을 수 있습니다.
Google Cloud 네트워크 개발 과정을 완료하고 기술 배지를 획득하세요. 이 과정에서는 IAM 역할 탐색 및 프로젝트 액세스 권한 추가/삭제, VPC 네트워크 생성, Compute Engine VM 배포 및 모니터링, SQL 쿼리 작성, Compute Engine에서 VM 배포 및 모니터링, Kubernetes를 여러 배포 접근 방식과 함께 사용하여 애플리케이션을 배포하는 등의 다양한 애플리케이션 배포 및 모니터링 방법을 배울 수 있습니다.
Earn a skill badge by completing the Automate Interactions with Contact Center AI quest, where you will learn about the features of Contact Center AI, including how to Build a virtual agent, Design conversation flows for your virtual agent; Add a phone gateway to your virtual agent; Use Dialogflow for troubleshooting; Review logs and debug your virtual agent. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete the skill badge quest, and final assessment challenge lab, to receive a digital badge that you can share with your network.
Earn the advanced skill badge by completing the Use Machine Learning APIs on Google Cloud course, where you learn the basic features for the following machine learning and AI technologies: Cloud Vision API, Cloud Translation API, and Cloud Natural Language API.
Google Cloud 네트워크 설정 과정을 완료하고 기술 배지를 획득하세요. 이 실습에서는 Google Cloud Platform에서 기본적인 네트워킹 작업을 수행하는 방법을 알아봅니다. 커스텀 네트워크를 만들고 서브넷 방화벽 규칙을 추가한 다음 VM을 만들고 VM이 서로 통신할 때의 지연 시간을 테스트합니다.
초급 BigQuery 데이터에서 인사이트 도출 기술 배지 과정을 완료하여 SQL 쿼리 작성, 공개 테이블 쿼리, BigQuery로 샘플 데이터 로드, BigQuery의 쿼리 검사기를 통한 일반적인 문법 오류 문제 해결, BigQuery 데이터를 연결해 Looker Studio에서 보고서를 생성하는 작업과 관련된 기술 역량을 입증하세요.
Earn a skill badge by completing the Explore Machine Learning Models with Explainable AI quest, where you will learn how to do the following using Explainable AI: build and deploy a model to an AI platform for serving (prediction), use the What-If Tool with an image recognition model, identify bias in mortgage data using the What-If Tool, and compare models using the What-If Tool to identify potential bias. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete this skill badge quest and the final assessment challenge lab to receive a skill badge that you can share with your network.
This advanced-level Quest builds on its predecessor Quest, and offers hands-on practice on the more advanced data integration features available in Cloud Data Fusion, while sharing best practices to build more robust, reusable, dynamic pipelines. Learners get to try out the data lineage feature as well to derive interesting insights into their data’s history.
SQL만으로 몇 시간이 아닌 몇 분 만에 머신러닝 모델을 빌드하고 싶으신가요? BigQuery ML은 데이터 분석가가 기존 SQL 도구와 기술을 사용하여 머신러닝 모델을 만들고, 학습시키고, 평가하고, 예측할 수 있게 하여 머신러닝을 범용화합니다. 이 실습 시리즈에서는 다양한 모델 유형을 실험하고 좋은 모델을 만드는 요소를 알아봅니다.
Data Catalog is deprecated and will be discontinued on January 30, 2026. You can still complete this course if you want to. For steps to transition your Data Catalog users, workloads, and content to Dataplex Catalog, see Transition from Data Catalog to Dataplex Catalog (https://cloud.google.com/dataplex/docs/transition-to-dataplex-catalog). Data Catalog is a fully managed and scalable metadata management service that empowers organizations to quickly discover, understand, and manage all of their data. In this quest you will start small by learning how to search and tag data assets and metadata with Data Catalog. After learning how to build your own tag templates that map to BigQuery table data, you will learn how to build MySQL, PostgreSQL, and SQLServer to Data Catalog Connectors.