Mario Amatucci
회원 가입일: 2020
실버 리그
31920포인트
회원 가입일: 2020
Kubernetes는 가장 인기 있는 컨테이너 조정 시스템이며, Google Kubernetes Engine은 Google Cloud에서 관리형 Kubernetes 배포를 지원하도록 특별히 설계되었습니다. 이 고급 과정에서는 Docker 이미지, 컨테이너를 구성하고 완전한 Kubernetes Engine 애플리케이션을 배포하는 실무형 실습을 진행합니다. 이 과정에서는 컨테이너 조정을 자체 워크플로에 통합하는 데 필요한 실용적인 기술을 알려드립니다. 기술을 입증하고 지식을 확인할 실무형 챌린지 실습을 찾고 계신가요? 이 과정을 마친 후 추가로 챌린지 실습을 완료하여 전용 Google Cloud 디지털 배지를 받으세요. 이 챌린지 실습은 Google Cloud에서 Kubernetes 애플리케이션 배포하기 과정이 끝나면 제공됩니다.
이 과정에서는 스트리밍 데이터 파이프라인을 빌드할 때 직면하는 실제 과제를 해결하기 위해 실습을 진행합니다. Google Cloud 제품을 사용하여 지속적이고 무제한적인 데이터를 관리하는 데 중점을 둡니다.
In this Quest, the experienced user of Google Cloud will learn how to describe and launch cloud resources with Terraform, an open source tool that codifies APIs into declarative configuration files that can be shared amongst team members, treated as code, edited, reviewed, and versioned. In these nine hands-on labs, you will work with example templates and understand how to launch a range of configurations, from simple servers, through full load-balanced applications.
이 과정에서는 Google Cloud의 생성형 AI 기반 공동작업 도구인 Gemini가 개발자의 애플리케이션 빌드에 어떤 도움이 되는지 알아봅니다. Gemini에 프롬프트를 입력하여 코드에 대한 설명을 얻고 Google Cloud 서비스를 추천받고 애플리케이션의 코드를 생성하는 방법을 배울 수 있습니다. 실무형 실습을 통해 Gemini로 애플리케이션 개발 워크플로가 얼마나 개선되는지 경험할 수 있습니다. Duet AI의 이름이 Google의 차세대 모델인 Gemini로 변경되었습니다.
기업에서 인공지능과 머신러닝의 사용이 계속 증가함에 따라 책임감 있는 빌드의 중요성도 커지고 있습니다. 대부분의 기업은 책임감 있는 AI를 실천하기가 말처럼 쉽지 않습니다. 조직에서 책임감 있는 AI를 운영하는 방법에 관심이 있다면 이 과정이 도움이 될 것입니다. 이 과정에서 책임감 있는 AI를 위해 현재 Google Cloud가 기울이고 있는 노력, 권장사항, Google Cloud가 얻은 교훈을 알아보면 책임감 있는 AI 접근 방식을 구축하기 위한 프레임워크를 수립할 수 있을 것입니다.
Introduction to Generative AI, Introduction to Large Language Models, Introduction to Responsible AI 과정을 완료하고 기술 배지를 획득하세요. 최종 퀴즈를 풀어보고 생성형 AI의 기본 개념을 제대로 이해했는지 확인해 보세요. 기술 배지는 Google Cloud 제품 및 서비스에 대한 지식을 숙지한 사람에게 Google Cloud에서 발급하는 디지털 배지입니다. 프로필을 공개하고 기술 배지를 소셜 미디어 프로필에 추가하여 공유하세요.
This course is part 1 of a 3-course series on Serverless Data Processing with Dataflow. In this first course, we start with a refresher of what Apache Beam is and its relationship with Dataflow. Next, we talk about the Apache Beam vision and the benefits of the Beam Portability framework. The Beam Portability framework achieves the vision that a developer can use their favorite programming language with their preferred execution backend. We then show you how Dataflow allows you to separate compute and storage while saving money, and how identity, access, and management tools interact with your Dataflow pipelines. Lastly, we look at how to implement the right security model for your use case on Dataflow.
Cloud technology can bring great value to an organization, and combining the power of cloud technology with data has the potential to unlock even more value and create new customer experiences. “Exploring Data Transformation with Google Cloud” explores the value data can bring to an organization and ways Google Cloud can make data useful and accessible. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.
Many traditional enterprises use legacy systems and applications that can't stay up-to-date with modern customer expectations. Business leaders often have to choose between maintaining their aging IT systems or investing in new products and services. "Modernize Infrastructure and Applications with Google Cloud" explores these challenges and offers solutions to overcome them by using cloud technology. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.
Organizations of all sizes are embracing the power and flexibility of the cloud to transform how they operate. However, managing and scaling cloud resources effectively can be a complex task. Scaling with Google Cloud Operations explores the fundamental concepts of modern operations, reliability, and resilience in the cloud, and how Google Cloud can help support these efforts. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.
책임감 있는 AI란 무엇이고 이것이 왜 중요하며 Google에서는 어떻게 제품에 책임감 있는 AI를 구현하고 있는지 설명하는 입문용 마이크로 학습 과정입니다. Google의 7가지 AI 원칙도 소개합니다.
Recently, a McKinsey report found that Generative AI could add up to $4.4 trillion a year to the global economy, signaling an imminent surge in the demand for GenAI professionals. Now is the perfect time to get a head start and gain hands-on experience with Google Cloud's powerful GenAI tools and techniques, carefully designed to enhance your tech skills and set you on a promising course. Play now to be at the forefront of innovation, shaping the future with GenAI and earning your first Google Cloud GenAI game badge!
As employers increasingly seek data experts on a global scale to solve real-world problems, we want you to stay ahead of the curve by acquiring the latest and most in-demand data skills. Game on to showcase your talent to the world by earning your first Google Cloud Credential!
The beautiful game is changing, and data science is playing a big role. Teams are now using data to make better decisions about everything, from player recruitment to game strategy. We invite you to get hands-on experience on the fundamentals of sports data science no matter who you're cheering for! Use BigQuery ML to train advanced models to predict goals and evaluate performance. Learn new skills and get started towards earning your first Google Cloud Credential. No prior experience required.
이 과정은 입문용 마이크로 학습 과정으로, 대규모 언어 모델(LLM)이란 무엇이고, LLM을 활용할 수 있는 사용 사례로는 어떤 것이 있으며, 프롬프트 조정을 사용해 LLM 성능을 개선하는 방법은 무엇인지 알아봅니다. 또한 자체 생성형 AI 앱을 개발하는 데 도움이 되는 Google 도구에 대해서도 다룹니다.
생성형 AI란 무엇이고 어떻게 사용하며 전통적인 머신러닝 방법과는 어떻게 다른지 설명하는 입문용 마이크로 학습 과정입니다. 직접 생성형 AI 앱을 개발하는 데 도움이 되는 Google 도구에 대해서도 다룹니다.
Welcome to Cloud Composer, where we discuss how to orchestrate data lake workflows with Cloud Composer.
Looking to build or optimize your data warehouse? Learn best practices to Extract, Transform, and Load your data into Google Cloud with BigQuery. In this series of interactive labs you will create and optimize your own data warehouse using a variety of large-scale BigQuery public datasets. BigQuery is Google's fully managed, NoOps, low cost analytics database. With BigQuery you can query terabytes and terabytes of data without having any infrastructure to manage or needing a database administrator. BigQuery uses SQL and can take advantage of the pay-as-you-go model. BigQuery allows you to focus on analyzing data to find meaningful insights. Looking for a hands on challenge lab to demonstrate your skills and validate your knowledge? On completing this quest, enroll in and finish the additional challenge lab at the end of this quest to receive an exclusive Google Cloud digital badge.
There's much excitement about cloud technology and digital transformation, but often many unanswered questions. For example: What is cloud technology? What does digital transformation mean? How can cloud technology help your organization? Where do you even begin? If you've asked yourself any of these questions, you're in the right place. This course provides an overview of the types of opportunities and challenges that companies often encounter in their digital transformation journey. If you want to learn about cloud technology so you can excel in your role and help build the future of your business, then this introductory course on digital transformation is for you. This course is part of the Cloud Digital Leader learning path.
App Engine: 세 가지 활용법 과정을 완료하고 기술 배지를 획득하세요. 이 과정에서는 Python, Go, PHP로 App Engine을 사용하는 방법을 알아봅니다.
이 과정에서는 데이터-AI 수명 주기를 지원하는 Google Cloud 빅데이터 및 머신러닝 제품과 서비스를 소개합니다. Google Cloud에서 Vertex AI를 사용하여 빅데이터 파이프라인 및 머신러닝 모델을 빌드하는 프로세스, 문제점 및 이점을 살펴봅니다.
This course helps learners create a study plan for the PDE (Professional Data Engineer) certification exam. Learners explore the breadth and scope of the domains covered in the exam. Learners assess their exam readiness and create their individual study plan.
데이터 레이크와 데이터 웨어하우스를 사용하는 기존 접근방식은 효과적일 수 있지만, 특히 대규모 엔터프라이즈 환경에서는 단점이 있습니다. 이 과정에서는 데이터 레이크하우스의 개념과 데이터 레이크하우스를 만드는 데 사용되는 Google Cloud 제품을 소개합니다. 레이크하우스 아키텍처는 개방형 표준 데이터 소스를 사용하며 데이터 레이크와 데이터 웨어하우스의 장점을 결합하여 많은 단점을 해결합니다.
중급 Google Cloud에서 Kubernetes 애플리케이션 배포하기 기술 배지 과정을 완료하여 Docker 컨테이너 이미지 구성 및 빌드, Google Kubernetes Engine(GKE) 클러스터 생성 및 관리, kubectl을 활용한 효율적인 클러스터 관리, 강력한 지속적 배포(CD) 관행으로 Kubernetes 애플리케이션 배포를 위한 기술을 갖추었음을 입증하세요.
This advanced-level quest is unique amongst the other catalog offerings. The labs have been curated to give IT professionals hands-on practice with topics and services that appear in the Google Cloud Certified Professional Data Engineer Certification. From Big Query, to Dataprep, to Cloud Composer, this quest is composed of specific labs that will put your Google Cloud data engineering knowledge to the test. Be aware that while practice with these labs will increase your skills and abilities, you will need other preparation, too. The exam is quite challenging and external studying, experience, and/or background in cloud data engineering is recommended. Looking for a hands on challenge lab to demonstrate your skills and validate your knowledge? On completing this quest, enroll in and finish the additional challenge lab at the end of the Engineer Data in the Google Cloud to receive an exclusive Google Cloud digital badge.
This is the second course in the Data to Insights course series. Here we will cover how to ingest new external datasets into BigQuery and visualize them with Looker Studio. We will also cover intermediate SQL concepts like multi-table JOINs and UNIONs which will allow you to analyze data across multiple data sources. Note: Even if you have a background in SQL, there are BigQuery specifics (like handling query cache and table wildcards) that may be new to you. After completing this course, enroll in the Achieving Advanced Insights with BigQuery course.
빅데이터, 머신러닝, 인공지능은 오늘날 인기 있는 컴퓨팅 관련 주제이지만 매우 전문화된 분야이기 때문에 초급용 자료를 구하기 어렵습니다. 다행히도 Google Cloud는 이러한 분야에서 사용자 친화적인 서비스를 제공하며 초급 과정을 통해 학습자에게 BigQuery, Cloud Speech API, Video Intelligence와 같은 도구를 사용해 시작할 기회를 제공합니다.
In this course, we see what the common challenges faced by data analysts are and how to solve them with the big data tools on Google Cloud. You’ll pick up some SQL along the way and become very familiar with using BigQuery and Dataprep to analyze and transform your datasets. This is the first course of the From Data to Insights with Google Cloud series. After completing this course, enroll in the Creating New BigQuery Datasets and Visualizing Insights course.
초급 Compute Engine에서 Cloud Load Balancing 구현하기 기술 배지 과정을 완료하여 Compute Engine에서 가상 머신 만들기 및 배포, 네트워크 및 애플리케이션 부하 분산기 구성과 관련된 기술 역량을 입증하세요.
데이터 파이프라인은 일반적으로 추출-로드(EL), 추출-로드-변환(ELT) 또는 추출-변환-로드(ETL) 패러다임 중 하나에 속합니다. 이 과정에서는 일괄 데이터에 사용해야 할 패러다임과 사용 시기에 대해 설명합니다. 또한 BigQuery, Dataproc에서의 Spark 실행, Cloud Data Fusion의 파이프라인 그래프, Dataflow를 사용한 서버리스 데이터 처리 등 데이터 변환을 위한 Google Cloud의 여러 가지 기술을 다룹니다. Google Cloud에서 Qwiklabs를 사용해 데이터 파이프라인 구성요소를 빌드하는 실무형 실습도 진행합니다.
Cloud Run Functions: 세 가지 활용법 과정을 완료하고 초급 기술 배지를 획득하세요. 이 과정에서는 Google Cloud 콘솔을 통해, 그리고 명령줄에서 Cloud Run Functions를 활용하는 방법을 살펴봅니다.
There’s so much more to cloud security than making your passwords something other than “password”. As more and more businesses move their data and applications to the cloud, the importance of - and demand for - cloud security is growing exponentially. In fact, the demand for cloud security professionals is outpacing the supply: according to a report by Cybersecurity Ventures, there are roughly 3.5 million unfilled cybersecurity positions around the world in 2023. Unlock your cloud security potential with hands-on experience in the Arcade - each lab teaches and tests your growing tech skills, and sets you on the path to a Google Cloud credential.
초급 Google Cloud의 Monitoring 기술 배지 과정을 완료하여 Cloud Monitoring 도구로 Google Cloud의 리소스를 모니터링하는 기술을 입증할 수 있습니다.
초급 Cloud Storage에서 안전한 데이터 레이크 만들기 기술 배지 과정을 완료하여 Cloud Storage 버킷 보안 및 구성, Gemini를 사용한 텍스트 생성, IAM 액세스 제어 관리, 데이터 거버넌스를 위한 Dataplex 레이크 설정 등의 작업을 수행할 수 있습니다.
Eventarc 시작하기 과정을 완료하고 기술 배지를 획득하세요. 이 과정에서는 Eventarc를 사용하여 Pub/Sub 주제 및 Cloud Storage 버킷을 포함한 다양한 리소스에 대한 이벤트 트리거를 만듭니다.
Cloud Storage 시작하기 기술 배지 과정을 완료하고 기술 배지를 획득하세요. 이 과정에서는 Cloud Storage 버킷을 만드는 방법, Cloud Storage 명령줄을 사용하는 방법, 버킷 잠금을 사용하여 버킷의 객체를 보호하는 방법을 알아봅니다.
Google API를 사용한 음성 및 언어 분석 과정을 완료하고 기술 배지를 획득하세요. 이 과정에서는 실제 환경에서 Natural Language API와 Speech API를 사용하는 방법을 알아봅니다.
The demand for data skills is growing rapidly, and we want you to get some of that sweet knowledge! According to a report by the McKinsey Global Institute, the demand for data scientists and analysts is expected to grow by 150% by 2025. Data can be used to identify trends, patterns, and insights that can help businesses improve their operations, products, and services - which makes data career paths highly valuable. There are a lot of different aspects to data science, so it's important to start with the basics - and we’ve got you covered. Kickstart your data skills discovery and get hands-on experience in the Arcade, with labs that help you learn and earn your first Google Cloud credential. No experience required.
초급 Dataplex 시작하기 기술 배지 과정을 완료하여 Dataplex 애셋 생성, 관점 유형 생성, Dataplex의 항목에 관점 적용과 관련된 기술 역량을 입증하세요.
Cloud Storage에서 스트리밍 데이터 레이크 만들기 과정을 완료하고 기술 배지를 획득하세요. 이 과정에서는 Google Cloud에서 Pub/Sub, Dataflow, Cloud Storage를 사용해 스트리밍 데이터 레이크를 만드는 방법을 알아봅니다.
Looker 시작하기 기술 배지 과정을 완료하고 기술 배지를 획득하세요. 이 과정에서는 Looker Studio와 Looker를 사용하여 데이터를 분석, 시각화, 선별하는 방법을 알아봅니다.