가입 로그인

Khushi Choudhary

회원 가입일: 2025

AI Infrastructure: Networking Techniques Earned 12월 30, 2025 EST
AI Infrastructure: Storage Options Earned 12월 30, 2025 EST
AI Infrastructure: Deployment Types Earned 12월 30, 2025 EST
AI Infrastructure: Cloud TPUs Earned 12월 30, 2025 EST
AI Infrastructure: Cloud GPUs Earned 12월 30, 2025 EST
AI Infrastructure: Introduction to AI Hypercomputer Earned 12월 30, 2025 EST
Google Skills Arcade Trivia December 2025 Week 1 Earned 12월 15, 2025 EST
BigQuery 머신러닝을 사용한 추론 Earned 12월 12, 2025 EST
Google DeepMind: 01 Build Your Own Small Language Model Earned 11월 4, 2025 EST
Google Skills Arcade Certification Zone October 2025 Earned 11월 2, 2025 EST
데이터 과학자와 분석가를 위한 Gemini Earned 10월 31, 2025 EDT

Welcome to the "AI Infrastructure: Networking Techniques" course. In this course, you'll learn to leverage Google Cloud's high-bandwidth, low-latency infrastructure to optimize data transfer and communication between all the components of your AI system. By the end, you'll grasp the critical role networking plays across the entire AI pipeline from data ingestion and training to inference and be able to apply best practices to ensure your workloads run at maximum speed.

자세히 알아보기

In this course, you’ll take a comprehensive journey through the storage solutions available on Google Cloud, specifically tailored for AI and high-performance computing (HPC) workloads. You’ll learn how to choose the right storage for each stage of the ML lifecycle. You’ll explore how to optimize for I/O performance during training, manage massive datasets for data preparation, and serve model artifacts with low latency. Through practical examples and demonstrations, you’ll gain the expertise to design robust storage solutions that accelerate your AI innovation.

자세히 알아보기

This course provides a comprehensive guide to deploying, managing, and optimizing AI and high-performance computing (HPC) workloads on Google Cloud. Through a series of lessons and practical demonstrations, you’ll explore diverse deployment strategies, ranging from highly customizable environments using Google Compute Engine (GCE) to managed solutions like Google Kubernetes Engine (GKE). Specifically, you’ll learn how to create clusters and deploy GKE for inference.

자세히 알아보기

Welcome to the Cloud TPUs course. We'll explore the advantages and disadvantages of TPUs in various scenarios and compare different TPU accelerators to help you choose the right fit. You'll learn strategies to maximize performance and efficiency for your AI models and understand the significance of GPU/TPU interoperability for flexible machine learning workflows. Through engaging content and practical demos, we'll guide you step-by-step in leveraging TPUs effectively.

자세히 알아보기

Curious about the powerful hardware behind AI? This course breaks down performance-optimized AI computers, showing you why they're so important. We'll explore how CPUs, GPUs, and TPUs make AI tasks super fast, what makes each one unique, and how AI software gets the most out of them. By the end, you'll know exactly how to pick the right compute for your AI projects, helping you make smart choices for your AI workkoads.

자세히 알아보기

Ready to get started with AI Hypercomputers? This course makes it easy! We'll cover the basics of what they are and how they help AI with AI workloads. You'll learn about the different components inside a hypercomputer, like GPUs, TPUs, and CPUs, and discover how to pick the right deployment approach for your needs.

자세히 알아보기

Hey there! You're invited to game on with Google Skills Arcade Trivia for December Week 1! Play throughout the month and boost your cloud learning journey. Every week, we'll release a new set of questions to test your knowledge of Google Cloud Platform. Get started now and earn the December Trivia Week 1 badge!

자세히 알아보기

BigQuery ML을 사용한 추론, 데이터 분석가가 BigQuery ML을 사용해야 하는 이유, 사용 사례, 지원되는 ML 모델을 알아봅니다. BigQuery에서 ML 모델을 만들고 관리하는 방법도 배웁니다.

자세히 알아보기

In this Google DeepMind course, you will learn the fundamentals of language models and gain a high-level understanding of the machine learning development pipeline. You will consider the strengths and limitations of traditional n-gram models and advanced transformer models. Practical coding labs will enable you to develop insights into how machine learning models work and how they can be used to generate text and identify patterns in language. Through real-world case studies, you will build an understanding around how research engineers operate. Drawing on these insights you will identify problems that you wish to tackle in your own community and consider how to leverage the power of machine learning responsibly to address these problems within a global and local context.

자세히 알아보기

Google Cloud Certifications provide a tangible way for you to demonstrate your skills to potential or current employers. These certifications incorporate performance-based questions, testing your hands-on expertise through practical tasks. Begin your journey towards becoming a Google Certified Professional with the help of the Arcade Cert Zone.

자세히 알아보기

이 과정에서는 Google Cloud의 생성형 AI 기반 파트너인 Gemini가 고객 데이터를 분석하고 제품 판매를 예측하는 데 어떤 도움이 되는지 알아봅니다. BigQuery에서 고객 데이터를 사용해 신규 고객을 식별, 분류, 개발하는 방법도 다룹니다. 실무형 실습을 통해 Gemini로 데이터 분석 및 머신러닝 워크플로가 얼마나 개선되는지 경험할 수 있습니다. Duet AI의 이름이 Google의 차세대 모델인 Gemini로 변경되었습니다.

자세히 알아보기