03
Encoder-Decoder Architecture - 한국어
03
Encoder-Decoder Architecture - 한국어
These skills were generated by AI. Do you agree this course teaches these skills?
이 과정은 기계 번역, 텍스트 요약, 질의 응답과 같은 시퀀스-투-시퀀스(Seq2Seq) 작업에 널리 사용되는 강력한 머신러닝 아키텍처인 인코더-디코더 아키텍처에 대한 개요를 제공합니다. 인코더-디코더 아키텍처의 기본 구성요소와 이러한 모델의 학습 및 서빙 방법에 대해 알아봅니다. 해당하는 실습 둘러보기에서는 TensorFlow에서 시를 짓는 인코더-디코더 아키텍처를 처음부터 간단하게 구현하는 코딩을 해봅니다.
과정 정보
목표
- 인코더-디코더 아키텍처의 기본 구성요소를 이해합니다
- 인코더-디코더 아키텍처를 사용해 모델을 학습시키고 모델로 텍스트를 생성하는 방법을 알아봅니다
- Keras로 자체 인코더-디코더 모델을 작성하는 방법을 알아봅니다
기본 요건
Python 및 Tensorflow에 대한 기초
대상
데이터 과학자, ML 엔지니어
사용할 수 있는 언어
English, español (Latinoamérica), français, עברית, bahasa Indonesia, italiano, 日本語, 한국어, português (Brasil), 简体中文, 繁體中文, Deutsch, Türkçe
과정을 완료한 후에는 어떻게 해야 하나요?
과정을 완료한 후 학습 과정 에서 다른 콘텐츠를 살펴보거나 학습 카탈로그 를 둘러보면 됩니다.
어떤 배지를 획득할 수 있나요?
과정을 완료하면 이수 배지가 주어집니다. 배지는 프로필에 표시되며 사회 연결망에서 공유할 수 있습니다.
Google의 주문형 파트너에서 제공하는 과정에 관심이 있으신가요?
Coursera 및 Pluralsight 에서 Google Cloud 콘텐츠를 살펴보세요.
강사 주도 강좌를 선호하시나요?