GSP633

Présentation
Une convolution est un filtre qui passe sur une image, l'analyse et extrait les caractéristiques communes qu'elle contient. Un réseau de neurones convolutif (CNN) est une classe de réseau de neurones profond (DNN) appliquée le plus souvent aux images.
Dans cet atelier, vous allez commencer avec un modèle de classification d'images développé à partir d'outils de vision par ordinateur, puis vous allez l'améliorer à l'aide d'un CNN. Vous utiliserez les données (des vêtements, sacs et chaussures) provenant d'un ensemble de données commun appelé Fashion MNIST.
Objectifs
Dans cet atelier, vous allez apprendre à effectuer les tâches suivantes :
- Examiner le modèle de départ
- Ajouter des convolutions, rassembler les données et définir le modèle
- Compiler et entraîner le modèle
- Visualiser les convolutions et le pooling
Prérequis
Pour que vous puissiez profiter pleinement de cette formation, nous vous conseillons de commencer par les ateliers suivants :
Préparation
Avant de cliquer sur le bouton "Démarrer l'atelier"
Lisez ces instructions. Les ateliers sont minutés, et vous ne pouvez pas les mettre en pause. Le minuteur, qui démarre lorsque vous cliquez sur Démarrer l'atelier, indique combien de temps les ressources Google Cloud resteront accessibles.
Cet atelier pratique vous permet de suivre les activités dans un véritable environnement cloud, et non dans un environnement de simulation ou de démonstration. Des identifiants temporaires vous sont fournis pour vous permettre de vous connecter à Google Cloud le temps de l'atelier.
Pour réaliser cet atelier :
- Vous devez avoir accès à un navigateur Internet standard (nous vous recommandons d'utiliser Chrome).
Remarque : Ouvrez une fenêtre de navigateur en mode incognito (recommandé) ou de navigation privée pour effectuer cet atelier. Vous éviterez ainsi les conflits entre votre compte personnel et le compte temporaire de participant, qui pourraient entraîner des frais supplémentaires facturés sur votre compte personnel.
- Vous disposez d'un temps limité. N'oubliez pas qu'une fois l'atelier commencé, vous ne pouvez pas le mettre en pause.
Remarque : Utilisez uniquement le compte de participant pour cet atelier. Si vous utilisez un autre compte Google Cloud, des frais peuvent être facturés à ce compte.
Démarrer l'atelier et se connecter à la console Google Cloud
-
Cliquez sur le bouton Démarrer l'atelier. Si l'atelier est payant, une boîte de dialogue s'affiche pour vous permettre de sélectionner un mode de paiement.
Sur la gauche, vous trouverez le panneau "Détails concernant l'atelier", qui contient les éléments suivants :
- Le bouton "Ouvrir la console Google Cloud"
- Le temps restant
- Les identifiants temporaires que vous devez utiliser pour cet atelier
- Des informations complémentaires vous permettant d'effectuer l'atelier
-
Cliquez sur Ouvrir la console Google Cloud (ou effectuez un clic droit et sélectionnez Ouvrir le lien dans la fenêtre de navigation privée si vous utilisez le navigateur Chrome).
L'atelier lance les ressources, puis ouvre la page "Se connecter" dans un nouvel onglet.
Conseil : Réorganisez les onglets dans des fenêtres distinctes, placées côte à côte.
Remarque : Si la boîte de dialogue Sélectionner un compte s'affiche, cliquez sur Utiliser un autre compte.
-
Si nécessaire, copiez le nom d'utilisateur ci-dessous et collez-le dans la boîte de dialogue Se connecter.
{{{user_0.username | "Username"}}}
Vous trouverez également le nom d'utilisateur dans le panneau "Détails concernant l'atelier".
-
Cliquez sur Suivant.
-
Copiez le mot de passe ci-dessous et collez-le dans la boîte de dialogue Bienvenue.
{{{user_0.password | "Password"}}}
Vous trouverez également le mot de passe dans le panneau "Détails concernant l'atelier".
-
Cliquez sur Suivant.
Important : Vous devez utiliser les identifiants fournis pour l'atelier. Ne saisissez pas ceux de votre compte Google Cloud.
Remarque : Si vous utilisez votre propre compte Google Cloud pour cet atelier, des frais supplémentaires peuvent vous être facturés.
-
Accédez aux pages suivantes :
- Acceptez les conditions d'utilisation.
- N'ajoutez pas d'options de récupération ni d'authentification à deux facteurs (ce compte est temporaire).
- Ne vous inscrivez pas à des essais sans frais.
Après quelques instants, la console Cloud s'ouvre dans cet onglet.
Remarque : Pour accéder aux produits et services Google Cloud, cliquez sur le menu de navigation ou saisissez le nom du service ou du produit dans le champ Recherche.
Activer Cloud Shell
Cloud Shell est une machine virtuelle qui contient de nombreux outils pour les développeurs. Elle comprend un répertoire d'accueil persistant de 5 Go et s'exécute sur Google Cloud. Cloud Shell vous permet d'accéder via une ligne de commande à vos ressources Google Cloud.
-
Cliquez sur Activer Cloud Shell
en haut de la console Google Cloud.
-
Passez les fenêtres suivantes :
- Accédez à la fenêtre d'informations de Cloud Shell.
- Autorisez Cloud Shell à utiliser vos identifiants pour effectuer des appels d'API Google Cloud.
Une fois connecté, vous êtes en principe authentifié et le projet est défini sur votre ID_PROJET : . Le résultat contient une ligne qui déclare l'ID_PROJET pour cette session :
Your Cloud Platform project in this session is set to {{{project_0.project_id | "PROJECT_ID"}}}
gcloud est l'outil de ligne de commande pour Google Cloud. Il est préinstallé sur Cloud Shell et permet la complétion par tabulation.
- (Facultatif) Vous pouvez lister les noms des comptes actifs à l'aide de cette commande :
gcloud auth list
- Cliquez sur Autoriser.
Résultat :
ACTIVE: *
ACCOUNT: {{{user_0.username | "ACCOUNT"}}}
To set the active account, run:
$ gcloud config set account `ACCOUNT`
- (Facultatif) Vous pouvez lister les ID de projet à l'aide de cette commande :
gcloud config list project
Résultat :
[core]
project = {{{project_0.project_id | "PROJECT_ID"}}}
Remarque : Pour consulter la documentation complète sur gcloud, dans Google Cloud, accédez au guide de présentation de la gcloud CLI.
Tâche 1 : Ouvrir le notebook dans Vertex AI Workbench
-
Dans la console Google Cloud, accédez au menu de navigation (
) et cliquez sur Vertex AI > Workbench.
-
Recherchez l'instance , puis cliquez sur le bouton Ouvrir JupyterLab.
L'interface JupyterLab de votre instance Workbench s'ouvre dans un nouvel onglet de navigateur.
Remarque : Si vous ne voyez pas de notebooks dans JupyterLab, veuillez suivre la procédure ci-dessous pour réinitialiser l'instance.
1. Fermez l'onglet du navigateur pour JupyterLab, puis revenez à la page d'accueil de Workbench.
2. Cochez la case à côté du nom de l'instance, puis cliquez sur Réinitialiser.
3. Une fois que le bouton Ouvrir JupyterLab est à nouveau activé, patientez une minute, puis cliquez dessus.
Tâche 2 : Exécuter le notebook de l'atelier
-
Dans le menu de gauche, ouvrez .
-
Dans la boîte de dialogue Select Kernel (Sélectionner le kernel), sélectionnez TensorFlow 2-11 (Local) dans la liste des kernels disponibles.
-
Modifiez le notebook de façon à inclure votre région dans la cellule 8. Vous la trouverez dans le panneau de gauche des instructions de l'atelier.
- Continuez l'atelier dans le notebook et exécutez chaque cellule en cliquant sur l'icône Exécuter (
) en haut de l'écran. Vous pouvez aussi exécuter le code d'une cellule en appuyant sur Maj+Entrée.
Lisez les explications et assurez-vous de bien comprendre ce qui se passe dans chaque cellule.
Pour afficher l'état de l'entraînement et du déploiement sur Vertex AI, vous pouvez suivre les instructions du notebook illustré.
Vérifier votre progression sur le notebook
Créer un bucket Cloud Storage
Cliquez sur Vérifier ma progression pour vérifier que le bucket a été créé. Créer un bucket Cloud Storage
Entraîner le modèle sur Vertex AI
Cliquez sur Vérifier ma progression pour valider l'objectif. Entraîner le modèle sur Vertex AI
Déployer le modèle
Cliquez sur Vérifier ma progression pour valider l'objectif. Déployer le modèle
Félicitations !
C'est ainsi que s'achève l'atelier d'auto-formation "Classer des images avec les réseaux de neurones convolutifs TensorFlow". Vous avez lancé le notebook sur les convolutions, et vous avez découvert les convolutions et le pooling.
Étapes suivantes et informations supplémentaires
Formations et certifications Google Cloud
Les formations et certifications Google Cloud vous aident à tirer pleinement parti des technologies Google Cloud. Nos cours portent sur les compétences techniques et les bonnes pratiques à suivre pour être rapidement opérationnel et poursuivre votre apprentissage. Nous proposons des formations pour tous les niveaux, à la demande, en salle et à distance, pour nous adapter aux emplois du temps de chacun. Les certifications vous permettent de valider et de démontrer vos compétences et votre expérience en matière de technologies Google Cloud.
Dernière mise à jour du manuel : 23 avril 2025
Dernier test de l'atelier : 23 avril 2025
Copyright 2025 Google LLC. Tous droits réservés. Google et le logo Google sont des marques de Google LLC. Tous les autres noms d'entreprises et de produits peuvent être des marques des entreprises auxquelles ils sont associés.