Accedi a oltre 700 lab e corsi

Neural network hybrid recommendation system on Google Analytics

Lab 1 ora 30 minuti universal_currency_alt 5 crediti show_chart Avanzati
info Questo lab potrebbe incorporare strumenti di AI a supporto del tuo apprendimento.
Accedi a oltre 700 lab e corsi

Overview

This lab shows you how to create a hybrid recommendation system using a combination of approaches and a neural network.

Objectives

In this lab, you learn to perform the following tasks:

  • Generate content-based features from our content-based recommendor

  • Create learned embeddings from our collaborative filtering system based on WALS

  • Combine the two different systems within a single deep neural network

Introduction

In this lab, you'll be providing article recommendations for users based on the Kurier.at data. You'll be combining both the content-based and collaborative filtering systems you've developed in previous labs.

Setup and requirements

For each lab, you get a new Google Cloud project and set of resources for a fixed time at no cost.

  1. Sign in to Qwiklabs using an incognito window.

  2. Note the lab's access time (for example, 1:15:00), and make sure you can finish within that time.
    There is no pause feature. You can restart if needed, but you have to start at the beginning.

  3. When ready, click Start lab.

  4. Note your lab credentials (Username and Password). You will use them to sign in to the Google Cloud Console.

  5. Click Open Google Console.

  6. Click Use another account and copy/paste credentials for this lab into the prompts.
    If you use other credentials, you'll receive errors or incur charges.

  7. Accept the terms and skip the recovery resource page.

Activate Cloud Shell

Cloud Shell is a virtual machine that contains development tools. It offers a persistent 5-GB home directory and runs on Google Cloud. Cloud Shell provides command-line access to your Google Cloud resources. gcloud is the command-line tool for Google Cloud. It comes pre-installed on Cloud Shell and supports tab completion.

  1. Click the Activate Cloud Shell button (Activate Cloud Shell icon) at the top right of the console.

  2. Click Continue.
    It takes a few moments to provision and connect to the environment. When you are connected, you are also authenticated, and the project is set to your PROJECT_ID.

Sample commands

  • List the active account name:

gcloud auth list

(Output)

Credentialed accounts: - <myaccount>@<mydomain>.com (active)

(Example output)

Credentialed accounts: - google1623327_student@qwiklabs.net
  • List the project ID:

gcloud config list project

(Output)

[core] project = <project_ID>

(Example output)

[core] project = qwiklabs-gcp-44776a13dea667a6 Note: Full documentation of gcloud is available in the gcloud CLI overview guide.

Task 1. Create storage bucket

Duration is 2 min

  1. In the Google Cloud Console, on the Navigation menu (Navigation menu icon), click Cloud Storage.

  2. Click Create bucket.

  3. Type a unique name, such as your project ID.

  4. Click Create.

Task 2. Launch AI Platform Notebooks

To launch AI Platform Notebooks:

Step 1

Click on the Navigation Menu. Navigate to AI Platform, then to Notebooks.

Open new notebook

Step 2

On the Notebook instances page, click NEW INSTANCE. Select a 1.XX version of TensorFlow (not a 2.0) without GPUs. In the following example, you would select Tensorflow Enterprise 1.15 > Without GPUs:

New instance, TensorFlow 1.x

Tensorflow 1.XX versions change semi-frequently, so the version you pick may be different.

In the pop-up, confirm the name of the deep learning VM and click Create.

Create new VM

The new VM will take 2-3 minutes to start.

Step 3

Click Open JupyterLab. A JupyterLab window will open in a new tab.

JupyterLab

Task 3. Clone course repo within your AI Platform Notebooks instance

To clone the training-data-analyst notebook in your JupyterLab instance:

  1. In JupyterLab, to open a new terminal, click the Terminal icon.

  2. At the command-line prompt, run the following command:

    git clone https://github.com/GoogleCloudPlatform/training-data-analyst
  3. To confirm that you have cloned the repository, double-click on the training-data-analyst directory and ensure that you can see its contents.
    The files for all the Jupyter notebook-based labs throughout this course are available in this directory.

Task 4. Create a hybrid recommendation system

  1. In the notebook interface, navigate to datalab > notebooks > training-data-analyst > courses > machine_learning > deepdive > 10_recommend > labs > hybrid_recommendations > hybrid_recommendations.ipynb.

  2. In the notebook interface, click on Edit > Clear All Outputs (click on Edit, then in the drop-down menu, select Clear All Outputs).

End your lab

When you have completed your lab, click End Lab. Qwiklabs removes the resources you’ve used and cleans the account for you.

You will be given an opportunity to rate the lab experience. Select the applicable number of stars, type a comment, and then click Submit.

The number of stars indicates the following:

  • 1 star = Very dissatisfied
  • 2 stars = Dissatisfied
  • 3 stars = Neutral
  • 4 stars = Satisfied
  • 5 stars = Very satisfied

You can close the dialog box if you don't want to provide feedback.

For feedback, suggestions, or corrections, please use the Support tab.

Copyright 2022 Google LLC All rights reserved. Google and the Google logo are trademarks of Google LLC. All other company and product names may be trademarks of the respective companies with which they are associated.

Prima di iniziare

  1. I lab creano un progetto e risorse Google Cloud per un periodo di tempo prestabilito
  2. I lab hanno un limite di tempo e non possono essere messi in pausa. Se termini il lab, dovrai ricominciare dall'inizio.
  3. In alto a sinistra dello schermo, fai clic su Inizia il lab per iniziare

Utilizza la navigazione privata

  1. Copia il nome utente e la password forniti per il lab
  2. Fai clic su Apri console in modalità privata

Accedi alla console

  1. Accedi utilizzando le tue credenziali del lab. L'utilizzo di altre credenziali potrebbe causare errori oppure l'addebito di costi.
  2. Accetta i termini e salta la pagina di ripristino delle risorse
  3. Non fare clic su Termina lab a meno che tu non abbia terminato il lab o non voglia riavviarlo, perché il tuo lavoro verrà eliminato e il progetto verrà rimosso

Questi contenuti non sono al momento disponibili

Ti invieremo una notifica via email quando sarà disponibile

Bene.

Ti contatteremo via email non appena sarà disponibile

Un lab alla volta

Conferma per terminare tutti i lab esistenti e iniziare questo

Utilizza la navigazione privata per eseguire il lab

Utilizza una finestra del browser in incognito o privata per eseguire questo lab. In questo modo eviterai eventuali conflitti tra il tuo account personale e l'account Studente, che potrebbero causare addebiti aggiuntivi sul tuo account personale.