Este contenido aún no está optimizado para dispositivos móviles.
Para obtener la mejor experiencia, visítanos en una computadora de escritorio con un vínculo que te enviaremos por correo electrónico.
Descripción general
Duración: 1 min
En este lab, refactorizarás la regresión lineal que implementaste en el lab anterior para que obtenga datos de un tf.data.Dataset y aprenderás a implementar un descenso de gradientes estocástico con ellos. En este caso, el conjunto de datos original será sintético, y la API de tf.data lo leerá directamente desde la memoria.
En la segunda parte, aprenderás a cargar un conjunto de datos que reside en un disco con la API de tf.data.
Objetivos de aprendizaje
En este lab, aprenderás a hacer lo siguiente:
Crear un notebook de instancia de Workbench
Usar tf.data para leer datos de la memoria
Usar tf.data en un bucle de entrenamiento
Usar tf.data para leer datos de un disco
Escribir canalizaciones de entrada de producción con la ingeniería de atributos (lotes, redistribución, etcétera)
Vertex AI ofrece dos soluciones de notebook, Workbench y Colab Enterprise.
Workbench
Vertex AI Workbench es una buena opción para los proyectos que priorizan el control y la personalización. Es excelente para proyectos complejos que abarcan múltiples archivos, con dependencias complejas. También es una buena opción para científicos de datos que están haciendo la transición a la nube desde una estación de trabajo o laptop.
Las instancias de Vertex AI Workbench tienen un conjunto previamente instalado de paquetes de aprendizaje profundo, lo que incluye la compatibilidad con los frameworks de TensorFlow y PyTorch.
Configuración
En cada lab, recibirás un proyecto de Google Cloud y un conjunto de recursos nuevos por tiempo limitado y sin costo adicional.
Accede a Google Skills en una ventana de incógnito.
Ten en cuenta el tiempo de acceso del lab (por ejemplo, 1:15:00) y asegúrate de finalizarlo en el plazo asignado.
No existe una función de pausa. Si lo necesitas, puedes reiniciar el lab, pero deberás hacerlo desde el comienzo.
Cuando esté listo, haga clic en Comenzar lab.
Anote las credenciales del lab (el nombre de usuario y la contraseña). Las usarás para acceder a la consola de Google Cloud.
Haga clic en Abrir Google Console.
Haga clic en Usar otra cuenta, copie las credenciales para este lab y péguelas en el mensaje emergente que aparece.
Si usas otras credenciales, se generarán errores o incurrirás en cargos.
Acepta las condiciones y omite la página de recursos de recuperación.
Tarea 1: Inicia la instancia de Vertex AI Workbench
En el menú de navegación () de la consola de Google Cloud, selecciona Vertex AI.
Haz clic en Habilitar todas las APIs recomendadas.
En el menú de navegación, haz clic en Workbench.
En la parte superior de la página de Workbench, asegúrate de estar en la vista Instances.
Haz clic en Create New.
Configura la instancia:
Name: lab-workbench
Region: Configura la región como
Zone: Establece la zona en
Advanced Options: Si es necesario, haz clic en "Advanced Options" para realizar personalizaciones adicionales (p. ej., tipo de máquina, tamaño del disco).
Haz clic en Create.
La instancia tardará algunos minutos en crearse. Se mostrará una marca de verificación verde junto a su nombre cuando esté lista.
Haz clic en ABRIR JUPYTERLAB junto al nombre de la instancia para iniciar la interfaz de JupyterLab. Se abrirá una pestaña nueva en el navegador.
Haz clic en el ícono de Python 3 para iniciar un nuevo notebook de Python.
Haz clic con el botón derecho en el archivo Untitled.ipynb en la barra de menú y selecciona Cambiar el nombre del notebook para asignarle un nombre significativo.
Acabas de configurar el entorno. Ya tienes todo listo para comenzar a trabajar con tu notebook de Vertex AI Workbench.
Haz clic en Revisar mi progreso para verificar el objetivo.
Iniciar la instancia de Vertex AI Workbench
Tarea 2. Clona un repo de un curso en tu interfaz de JupyterLab
El repo de GitHub contiene el archivo del lab y los archivos de soluciones del curso.
Copia y ejecuta el siguiente código en la primera celda de tu notebook para clonar el repositorio training-data-analyst.
Para confirmar que se haya clonado el repositorio, haz doble clic en el directorio training-data-analyst y confirma que puedes ver el contenido.
Haz clic en Revisar mi progreso para verificar el objetivo.
Clonar un repo de un curso en tu interfaz de JupyterLab
Tarea 3. Manipula datos con tf.data
Duración: 30 min
En la interfaz del notebook, navega a training-data-analyst > courses > machine_learning > deepdive2 > introduction_to_tensorflow > labs > 2_dataset_api.ipynb.
Se mostrará una ventana emergente para que selecciones un kernel. Entre las opciones, elige el kernel TensorFlow 2.11 (Local).
En la interfaz del notebook, haz clic en Editar > Borrar todos los resultados.
Lee con atención las instrucciones del notebook y completa con el código correspondiente las líneas que están marcadas con #TODO según sea necesario.
Haz clic en Revisar mi progreso para verificar el objetivo.
Manipular datos con tf.data
Finalice su lab
Cuando haya completado su lab, haga clic en Finalizar lab. Qwiklabs quitará los recursos que usó y limpiará la cuenta por usted.
Tendrá la oportunidad de calificar su experiencia en el lab. Seleccione la cantidad de estrellas que corresponda, ingrese un comentario y haga clic en Enviar.
La cantidad de estrellas indica lo siguiente:
1 estrella = Muy insatisfecho
2 estrellas = Insatisfecho
3 estrellas = Neutral
4 estrellas = Satisfecho
5 estrellas = Muy satisfecho
Puede cerrar el cuadro de diálogo si no desea proporcionar comentarios.
Para enviar comentarios, sugerencias o correcciones, use la pestaña Asistencia.
Copyright 2026 Google LLC. Todos los derechos reservados. Google y el logotipo de Google son marcas de Google LLC. El resto de los nombres de productos y empresas pueden ser marcas de las respectivas empresas a las que están asociados.
Los labs crean un proyecto de Google Cloud y recursos por un tiempo determinado
.
Los labs tienen un límite de tiempo y no tienen la función de pausa. Si finalizas el lab, deberás reiniciarlo desde el principio.
En la parte superior izquierda de la pantalla, haz clic en Comenzar lab para empezar
Usa la navegación privada
Copia el nombre de usuario y la contraseña proporcionados para el lab
Haz clic en Abrir la consola en modo privado
Accede a la consola
Accede con tus credenciales del lab. Si usas otras credenciales, se generarán errores o se incurrirá en cargos.
Acepta las condiciones y omite la página de recursos de recuperación
No hagas clic en Finalizar lab, a menos que lo hayas terminado o quieras reiniciarlo, ya que se borrará tu trabajo y se quitará el proyecto
Este contenido no está disponible en este momento
Te enviaremos una notificación por correo electrónico cuando esté disponible
¡Genial!
Nos comunicaremos contigo por correo electrónico si está disponible
Un lab a la vez
Confirma para finalizar todos los labs existentes y comenzar este
Usa la navegación privada para ejecutar el lab
Usa una ventana de navegación privada o de Incógnito para ejecutar el lab. Así
evitarás cualquier conflicto entre tu cuenta personal y la cuenta
de estudiante, lo que podría generar cargos adicionales en tu cuenta personal.
En este lab, refactorizarás un modelo de regresión lineal existente para que obtenga sus datos de un tf.data.Dataset.
Duración:
0 min de configuración
·
Acceso por 120 min
·
120 min para completar