700개 이상의 실습 및 과정 이용하기

Creating Repeatable Dataset Splits in BigQuery v1.5

실습 1시간 30분 universal_currency_alt 크레딧 5개 show_chart 입문
info 이 실습에는 학습을 지원하는 AI 도구가 통합되어 있을 수 있습니다.
700개 이상의 실습 및 과정 이용하기

Overview

Duration is 1 min

Repeatability is important in machine learning. If you do the same thing now and 5 minutes from now and get different answers, then it makes experimentation difficult. In other words, you will find it difficult to gauge whether a change you made has resulted in an improvement or not.

What you will need

  • You need to be logged into GCP Console with your Qwiklabs generated account.

What you will learn

In this lab, you will learn how to:

  • Explore the impact of different ways of creating machine learning datasets.

Setup and requirements

For each lab, you get a new Google Cloud project and set of resources for a fixed time at no cost.

  1. Sign in to Qwiklabs using an incognito window.

  2. Note the lab's access time (for example, 1:15:00), and make sure you can finish within that time.
    There is no pause feature. You can restart if needed, but you have to start at the beginning.

  3. When ready, click Start lab.

  4. Note your lab credentials (Username and Password). You will use them to sign in to the Google Cloud Console.

  5. Click Open Google Console.

  6. Click Use another account and copy/paste credentials for this lab into the prompts.
    If you use other credentials, you'll receive errors or incur charges.

  7. Accept the terms and skip the recovery resource page.

Task 1. Launch Vertex AI notebooks

  1. Click on the Navigation Menu.

  2. Click Vertex AI > Dashboard.

  3. Click Enable All Recommended APIs. This action will only take a few seconds.

  4. Click Workbench from the left pane.

  5. Click User-Managed Notebooks on the View ribbon.

  6. Click on the + Create New icon on the top of the page.

  7. For Environment select Python 3 (with Intel® MKL).

  8. Click on the Advanced Options link at the bottom of the side window.

  9. Set the Region to and Zone to .

  10. Click Machine Type from the left pane. Select E2-standard and e2-standard-4 from the list of options.

  11. At the bottom of the page, click Create. Notebook creation should take 4 to 7 minutes to complete.

  12. After a few minutes, the Vertex AI console will have your instance name followed by Open Jupyterlab. Click Open Jupyterlab.

Your notebook environment is now set up.

Task 2. Clone course repo within your AI Platform notebooks instance

To clone the training-data-analyst notebook in your JupyterLab instance:

  1. In JupyterLab, to open a new terminal, click the Terminal icon.

  2. At the command-line prompt, run the following command:

    git clone https://github.com/GoogleCloudPlatform/training-data-analyst
  3. To confirm that you have cloned the repository, double-click on the training-data-analyst directory and ensure that you can see its contents.
    The files for all the Jupyter notebook-based labs throughout this course are available in this directory.

Task 3. Create repeatable dataset splits

Duration is 15 min

  1. In the notebook interface, navigate to training-data-analyst > courses > machine_learning > deepdive > 02_generalization and open repeatable_splitting.ipynb.

  2. In the notebook interface, click on Edit > Clear All Outputs.

  3. Now read the narrative and execute each cell in turn.

End your lab

When you have completed your lab, click End Lab. Google Cloud Skills Boost removes the resources you’ve used and cleans the account for you.

You will be given an opportunity to rate the lab experience. Select the applicable number of stars, type a comment, and then click Submit.

The number of stars indicates the following:

  • 1 star = Very dissatisfied
  • 2 stars = Dissatisfied
  • 3 stars = Neutral
  • 4 stars = Satisfied
  • 5 stars = Very satisfied

You can close the dialog box if you don't want to provide feedback.

For feedback, suggestions, or corrections, please use the Support tab.

Copyright 2022 Google LLC All rights reserved. Google and the Google logo are trademarks of Google LLC. All other company and product names may be trademarks of the respective companies with which they are associated.

시작하기 전에

  1. 실습에서는 정해진 기간 동안 Google Cloud 프로젝트와 리소스를 만듭니다.
  2. 실습에는 시간 제한이 있으며 일시중지 기능이 없습니다. 실습을 종료하면 처음부터 다시 시작해야 합니다.
  3. 화면 왼쪽 상단에서 실습 시작을 클릭하여 시작합니다.

시크릿 브라우징 사용

  1. 실습에 입력한 사용자 이름비밀번호를 복사합니다.
  2. 비공개 모드에서 콘솔 열기를 클릭합니다.

콘솔에 로그인

    실습 사용자 인증 정보를 사용하여
  1. 로그인합니다. 다른 사용자 인증 정보를 사용하면 오류가 발생하거나 요금이 부과될 수 있습니다.
  2. 약관에 동의하고 리소스 복구 페이지를 건너뜁니다.
  3. 실습을 완료했거나 다시 시작하려고 하는 경우가 아니면 실습 종료를 클릭하지 마세요. 이 버튼을 클릭하면 작업 내용이 지워지고 프로젝트가 삭제됩니다.

현재 이 콘텐츠를 이용할 수 없습니다

이용할 수 있게 되면 이메일로 알려드리겠습니다.

감사합니다

이용할 수 있게 되면 이메일로 알려드리겠습니다.

한 번에 실습 1개만 가능

모든 기존 실습을 종료하고 이 실습을 시작할지 확인하세요.

시크릿 브라우징을 사용하여 실습 실행하기

이 실습을 실행하려면 시크릿 모드 또는 시크릿 브라우저 창을 사용하세요. 개인 계정과 학생 계정 간의 충돌로 개인 계정에 추가 요금이 발생하는 일을 방지해 줍니다.