Repeatability is important in machine learning. If you do the same thing now and 5 minutes from now and get different answers, then it makes experimentation difficult. In other words, you will find it difficult to gauge whether a change you made has resulted in an improvement or not.
What you will need
You need to be logged into GCP Console with your Qwiklabs generated account.
What you will learn
In this lab, you will learn how to:
Explore the impact of different ways of creating machine learning datasets.
Setup and requirements
For each lab, you get a new Google Cloud project and set of resources for a fixed time at no cost.
Sign in to Qwiklabs using an incognito window.
Note the lab's access time (for example, 1:15:00), and make sure you can finish within that time.
There is no pause feature. You can restart if needed, but you have to start at the beginning.
When ready, click Start lab.
Note your lab credentials (Username and Password). You will use them to sign in to the Google Cloud Console.
Click Open Google Console.
Click Use another account and copy/paste credentials for this lab into the prompts.
If you use other credentials, you'll receive errors or incur charges.
Accept the terms and skip the recovery resource page.
Task 1. Launch Vertex AI notebooks
Click on the Navigation Menu.
Click Vertex AI > Dashboard.
Click Enable All Recommended APIs. This action will only take a few seconds.
Click Workbench from the left pane.
Click User-Managed Notebooks on the View ribbon.
Click on the + Create New icon on the top of the page.
For Environment select Python 3 (with Intel® MKL).
Click on the Advanced Options link at the bottom of the side window.
Set the Region to and Zone to .
Click Machine Type from the left pane. Select E2-standard and e2-standard-4 from the list of options.
At the bottom of the page, click Create. Notebook creation should take 4 to 7 minutes to complete.
After a few minutes, the Vertex AI console will have your instance name followed by Open Jupyterlab. Click Open Jupyterlab.
Your notebook environment is now set up.
Task 2. Clone course repo within your AI Platform notebooks instance
To clone the training-data-analyst notebook in your JupyterLab instance:
In JupyterLab, to open a new terminal, click the Terminal icon.
At the command-line prompt, run the following command:
To confirm that you have cloned the repository, double-click on the training-data-analyst directory and ensure that you can see its contents.
The files for all the Jupyter notebook-based labs throughout this course are available in this directory.
Task 3. Create repeatable dataset splits
Duration is 15 min
In the notebook interface, navigate to training-data-analyst > courses > machine_learning > deepdive > 02_generalization and open repeatable_splitting.ipynb.
In the notebook interface, click on Edit > Clear All Outputs.
Now read the narrative and execute each cell in turn.
End your lab
When you have completed your lab, click End Lab. Google Cloud Skills Boost removes the resources you’ve used and cleans the account for you.
You will be given an opportunity to rate the lab experience. Select the applicable number of stars, type a comment, and then click Submit.
The number of stars indicates the following:
1 star = Very dissatisfied
2 stars = Dissatisfied
3 stars = Neutral
4 stars = Satisfied
5 stars = Very satisfied
You can close the dialog box if you don't want to provide feedback.
For feedback, suggestions, or corrections, please use the Support tab.
Copyright 2022 Google LLC All rights reserved. Google and the Google logo are trademarks of Google LLC. All other company and product names may be trademarks of the respective companies with which they are associated.
I lab creano un progetto e risorse Google Cloud per un periodo di tempo prestabilito
I lab hanno un limite di tempo e non possono essere messi in pausa. Se termini il lab, dovrai ricominciare dall'inizio.
In alto a sinistra dello schermo, fai clic su Inizia il lab per iniziare
Utilizza la navigazione privata
Copia il nome utente e la password forniti per il lab
Fai clic su Apri console in modalità privata
Accedi alla console
Accedi utilizzando le tue credenziali del lab. L'utilizzo di altre credenziali potrebbe causare errori oppure l'addebito di costi.
Accetta i termini e salta la pagina di ripristino delle risorse
Non fare clic su Termina lab a meno che tu non abbia terminato il lab o non voglia riavviarlo, perché il tuo lavoro verrà eliminato e il progetto verrà rimosso
Questi contenuti non sono al momento disponibili
Ti invieremo una notifica via email quando sarà disponibile
Bene.
Ti contatteremo via email non appena sarà disponibile
Un lab alla volta
Conferma per terminare tutti i lab esistenti e iniziare questo
Utilizza la navigazione privata per eseguire il lab
Utilizza una finestra del browser in incognito o privata per eseguire questo lab. In questo modo eviterai eventuali conflitti tra il tuo account personale e l'account Studente, che potrebbero causare addebiti aggiuntivi sul tuo account personale.
Repeatability is important in machine learning. If you do the same thing now and 5 minutes from now and get different answers, then it makes experimentation is difficult.
Durata:
Configurazione in 0 m
·
Accesso da 90 m
·
Completamento in 90 m