読み込んでいます...
一致する結果は見つかりませんでした。

Google Cloud Skills Boost

Google Cloud コンソールでスキルを試す

700 以上のラボとコースにアクセス

Gemini API を使用した合成データの生成

ラボ 1時間 30分 universal_currency_alt クレジット: 1 show_chart 入門
info このラボでは、学習をサポートする AI ツールが組み込まれている場合があります。
700 以上のラボとコースにアクセス

GSP1272

Google Cloud セルフペース ラボのロゴ

概要

このラボでは、Vertex AI の Gemini API を使用して Snowfakery で合成データを生成する方法を学びます。Snowfakery は、複雑な架空データを作成するための強力なフレームワークであり、Gemini はその自然言語機能を活用することで、このプロセスを強化します。データ生成戦略の定義方法、事前定義されたスキーマの利用方法、Wikipedia ページをシードとして使用するさまざまなデータ形式(ブログやコメントなど)の生成方法を学びます。このアプローチは、一般的なテスト、プロンプトのテスト、少数ショットの例の構築に役立ちます。

前提条件

このラボを開始する前に、以下について理解しておく必要があります。

  • 基本的な Python プログラミング。
  • 一般的な API のコンセプト。
  • Vertex AI Workbench の Jupyter ノートブックでの Python コードの実行。

目標

このラボでは、次の作業を行います。

  • Vertex AI SDK for Python を使用して Gemini API を操作する。
  • Snowfakery を利用して、スキーマとデータ生成戦略を定義する。
  • Gemini を活用して、さまざまな形式の合成データを生成する。
  • 一般的なテストやプロンプトのテストなど、合成データ生成の実用的な活用方法について学ぶ。

設定と要件

[ラボを開始] ボタンをクリックする前に

こちらの説明をお読みください。ラボには時間制限があり、一時停止することはできません。タイマーは、Google Cloud のリソースを利用できる時間を示しており、[ラボを開始] をクリックするとスタートします。

このハンズオンラボでは、シミュレーションやデモ環境ではなく実際のクラウド環境を使って、ラボのアクティビティを行います。そのため、ラボの受講中に Google Cloud にログインおよびアクセスするための、新しい一時的な認証情報が提供されます。

このラボを完了するためには、下記が必要です。

  • 標準的なインターネット ブラウザ(Chrome を推奨)
注: このラボの実行には、シークレット モード(推奨)またはシークレット ブラウジング ウィンドウを使用してください。これにより、個人アカウントと受講者アカウント間の競合を防ぎ、個人アカウントに追加料金が発生しないようにすることができます。
  • ラボを完了するための時間(開始後は一時停止できません)
注: このラボでは、受講者アカウントのみを使用してください。別の Google Cloud アカウントを使用すると、そのアカウントに料金が発生する可能性があります。

ラボを開始して Google Cloud コンソールにログインする方法

  1. [ラボを開始] ボタンをクリックします。ラボの料金をお支払いいただく必要がある場合は、表示されるダイアログでお支払い方法を選択してください。 左側の [ラボの詳細] ペインには、以下が表示されます。

    • [Google Cloud コンソールを開く] ボタン
    • 残り時間
    • このラボで使用する必要がある一時的な認証情報
    • このラボを行うために必要なその他の情報(ある場合)
  2. [Google Cloud コンソールを開く] をクリックします(Chrome ブラウザを使用している場合は、右クリックして [シークレット ウィンドウで開く] を選択します)。

    ラボでリソースがスピンアップし、別のタブで [ログイン] ページが表示されます。

    ヒント: タブをそれぞれ別のウィンドウで開き、並べて表示しておきましょう。

    注: [アカウントの選択] ダイアログが表示されたら、[別のアカウントを使用] をクリックします。
  3. 必要に応じて、下のユーザー名をコピーして、[ログイン] ダイアログに貼り付けます。

    {{{user_0.username | "Username"}}}

    [ラボの詳細] ペインでもユーザー名を確認できます。

  4. [次へ] をクリックします。

  5. 以下のパスワードをコピーして、[ようこそ] ダイアログに貼り付けます。

    {{{user_0.password | "Password"}}}

    [ラボの詳細] ペインでもパスワードを確認できます。

  6. [次へ] をクリックします。

    重要: ラボで提供された認証情報を使用する必要があります。Google Cloud アカウントの認証情報は使用しないでください。 注: このラボでご自身の Google Cloud アカウントを使用すると、追加料金が発生する場合があります。
  7. その後次のように進みます。

    • 利用規約に同意してください。
    • 一時的なアカウントなので、復元オプションや 2 要素認証プロセスは設定しないでください。
    • 無料トライアルには登録しないでください。

その後、このタブで Google Cloud コンソールが開きます。

注: Google Cloud のプロダクトやサービスにアクセスするには、ナビゲーション メニューをクリックするか、[検索] フィールドにサービス名またはプロダクト名を入力します。 ナビゲーション メニュー アイコンと検索フィールド

タスク 1. Vertex AI Workbench でノートブックを開く

  1. Google Cloud コンソールのナビゲーション メニューナビゲーション メニュー アイコン)で、[Vertex AI] > [ワークベンチ] の順にクリックします。

  2. インスタンスを見つけて、[JupyterLab を開く] ボタンをクリックします。

Workbench インスタンスの JupyterLab インターフェースが新しいブラウザタブで開きます。

タスク 2. ノートブックを設定する

  1. ファイルを開きます。

  2. [Select Kernel] ダイアログで、使用可能なカーネルのリストから [Python 3] を選択します。

  3. ノートブックの「Getting Started」(スタートガイド)セクションと「Import libraries」(ライブラリのインポート)セクションをすべて実行します。

    • [Project ID] に を使用し、[Location] に を使用します。
注: 「Colab only」(Colab のみ)と記載されているノートブック セルの実行は省略できます。 いずれかのノートブック セルの実行で 429 応答が返される場合は、1 分待ってから再度セルを実行し、次に進んでください。

[進行状況を確認] をクリックして、目標に沿って進んでいることを確認します。 パッケージをインストールし、ライブラリをインポートする

タスク 3. プラグインとプロンプトを作成する

このタスクでは、このユースケースに必要なカスタム プラグイン 2 つとプロンプトを作成します。1 つ目のプラグインは、Wikipedia とやり取りして、指定したページのコンテンツを取得する機能を提供します。2 つ目のプラグインは、Gemini API を操作するものです。

  1. ノートブックの「Creating Plugins and Prompts」(プラグインとプロンプトを作成する)セクションを実行します。

[進行状況を確認] をクリックして、目標に沿って進んでいることを確認します。 プラグインとプロンプトを作成する

タスク 4. レシピを作成する

合成データを生成するには、まず合成データのスキーマを定義する必要があります。これは、ノートブックで示されているように、YAML 形式のレシピを作成することで行います。レシピの作成に関する詳細は、こちらをご覧ください。このタスクでは、合成的に生成されたデータのスキーマを定義します。

  1. ノートブックの「Creating the Recipe」(レシピを作成する)セクションを実行します。

[進行状況を確認] をクリックして、目標に沿って進んでいることを確認します。 レシピを作成する

タスク 5. データを生成する

このタスクでは、データを生成し、その結果を /outputs フォルダで確認します。

  1. ノートブックの「Generating Data」(データを生成する)セクションを実行します。
注: このステップは完了するまでに数分かかる場合があります。

[進行状況を確認] をクリックして、目標に沿って進んでいることを確認します。 データを生成する

お疲れさまでした

これで完了です。このラボでは、Vertex AI SDK for Python を使用して Gemini API を操作し、合成データを生成する機能を確認しました。Snowfakery を使用してスキーマとデータ生成戦略を定義することで、特定の要件を満たすように出力をカスタマイズできました。さらに、さまざまな形式の合成データを生成する Gemini の汎用性について学び、一般的なテストやプロンプトのテストなど、実用的な活用方法の可能性を探りました。

次のステップと詳細情報

以下のリソースで Gemini に関する理解を深めましょう。

Google Cloud トレーニングと認定資格

Google Cloud トレーニングと認定資格を通して、Google Cloud 技術を最大限に活用できるようになります。必要な技術スキルとベスト プラクティスについて取り扱うクラスでは、学習を継続的に進めることができます。トレーニングは基礎レベルから上級レベルまであり、オンデマンド、ライブ、バーチャル参加など、多忙なスケジュールにも対応できるオプションが用意されています。認定資格を取得することで、Google Cloud テクノロジーに関するスキルと知識を証明できます。

マニュアルの最終更新日: 2025 年 5 月 28 日

ラボの最終テスト日: 2025 年 5 月 28 日

Copyright 2025 Google LLC. All rights reserved. Google および Google のロゴは Google LLC の商標です。その他すべての企業名および商品名はそれぞれ各社の商標または登録商標です。

始める前に

  1. ラボでは、Google Cloud プロジェクトとリソースを一定の時間利用します
  2. ラボには時間制限があり、一時停止機能はありません。ラボを終了した場合は、最初からやり直す必要があります。
  3. 画面左上の [ラボを開始] をクリックして開始します

シークレット ブラウジングを使用する

  1. ラボで使用するユーザー名パスワードをコピーします
  2. プライベート モードで [コンソールを開く] をクリックします

コンソールにログインする

    ラボの認証情報を使用して
  1. ログインします。他の認証情報を使用すると、エラーが発生したり、料金が発生したりする可能性があります。
  2. 利用規約に同意し、再設定用のリソースページをスキップします
  3. ラボを終了する場合や最初からやり直す場合を除き、[ラボを終了] はクリックしないでください。クリックすると、作業内容がクリアされ、プロジェクトが削除されます

このコンテンツは現在ご利用いただけません

利用可能になりましたら、メールでお知らせいたします

ありがとうございます。

利用可能になりましたら、メールでご連絡いたします

1 回に 1 つのラボ

既存のラボをすべて終了して、このラボを開始することを確認してください

シークレット ブラウジングを使用してラボを実行する

このラボの実行には、シークレット モードまたはシークレット ブラウジング ウィンドウを使用してください。これにより、個人アカウントと受講者アカウントの競合を防ぎ、個人アカウントに追加料金が発生することを防ぎます。