Akhmad Khudri
成为会员时间:2025
钻石联赛
41757 积分
成为会员时间:2025
This course introduces you to event-based applications and teaches you how to use service orchestration and choreography to coordinate microservices. Using lectures and hands-on labs, you learn how to use Workflows, Eventarc, Cloud Tasks, and Cloud Scheduler to build microservices applications on Google Cloud.
In this course, you learn the fundamentals of application development on Google Cloud. You learn best practices for cloud applications, and how to select compute and data options to match your application use cases. You're introduced to generative AI and how it's used to help build applications. You learn about authentication and authorization, application deployment, continuous integration and delivery, and monitoring and performance tuning for your applications running in Google Cloud. Using lectures and hands-on labs, you learn how to get started building and running applications on Google Cloud.
“Google Cloud 基础知识:核心基础设施”介绍在使用 Google Cloud 时会遇到的重要概念和术语。本课程通过视频和实操实验来介绍并比较 Google Cloud 的多种计算和存储服务,并提供重要的资源和政策管理工具。
This course provides a comprehensive guide to deploying, managing, and optimizing AI and high-performance computing (HPC) workloads on Google Cloud. Through a series of lessons and practical demonstrations, you’ll explore diverse deployment strategies, ranging from highly customizable environments using Google Compute Engine (GCE) to managed solutions like Google Kubernetes Engine (GKE). Specifically, you’ll learn how to create clusters and deploy GKE for inference.
Welcome to the "AI Infrastructure: Networking Techniques" course. In this course, you'll learn to leverage Google Cloud's high-bandwidth, low-latency infrastructure to optimize data transfer and communication between all the components of your AI system. By the end, you'll grasp the critical role networking plays across the entire AI pipeline from data ingestion and training to inference and be able to apply best practices to ensure your workloads run at maximum speed.
In this course you will learn how to use the new generative AI features in Dialogflow CX to create virtual agents that can have more natural and engaging conversations with customers. Discover how to deploy generative fallback responses to gracefully handle errors and omissions in customer conversations, deploy generators to increase intent coverage, and structure, ingest, and manage data in a data store. And explore how to deploy and maintain generative AI agents using your data, and deploy and maintain hybrid agents in combination with existing intent-based design paradigms.
在本课程中,您将了解 Gemini(Google Cloud 推出的一款依托生成式 AI 的协作工具)如何帮助您保护您的云环境和资源。您将学习如何将示例工作负载部署到 Google Cloud 环境中,以及如何借助 Gemini 识别和修复安全配置错误。您可以通过实操实验了解如何利用 Gemini 来改善云安全状况。 Duet AI 已更名为 Gemini,这是我们的新一代模型。
在本课程中,您将了解 Gemini(Google Cloud 的生成式 AI 赋能的协作工具)如何帮助管理员预配基础设施。您将了解如何通过输入提示来让 Gemini 解释基础设施、GKE 集群的部署,以及现有基础设施的更新。您可以通过实操实验了解如何利用 Gemini 来改进 GKE 部署工作流。 Duet AI 已更名为 Gemini,这是我们的新一代模型。
In this course, you’ll take a comprehensive journey through the storage solutions available on Google Cloud, specifically tailored for AI and high-performance computing (HPC) workloads. You’ll learn how to choose the right storage for each stage of the ML lifecycle. You’ll explore how to optimize for I/O performance during training, manage massive datasets for data preparation, and serve model artifacts with low latency. Through practical examples and demonstrations, you’ll gain the expertise to design robust storage solutions that accelerate your AI innovation.
本课程能让机器学习从业者掌握评估生成式和预测式 AI 模型的基本工具、方法和最佳实践。要确保机器学习系统在实际运用中提供可靠、准确、高效的结果,做好模型评估至关重要。 学员将深入了解各项评估指标、方法及如何在不同模型类型和任务中适当应用这些指标和方法。课程将着重介绍生成式 AI 模型带来的独特挑战,并提供有效解决这些挑战的策略。通过利用 Google Cloud 的 Vertex AI Platform,学员可学习如何在模型选择、优化和持续监控工作中实施卓有成效的评估流程。
本课程回顾了 Model Armor 的基本安全功能,并让您能够使用该服务。您将了解与 LLM 相关的安全风险,以及 Model Armor 如何保护您的 AI 应用。
人工智能 (AI) 具备巨大的变革潜力,但也带来了新的安全挑战。本课程专为负责安全性和数据保护的领导者而设计,助其运用相关策略在组织内安全管理 AI。学习一个有助于实现以下目标的框架:主动识别并减轻 AI 特有的风险,保护敏感数据,确保遵从法规,构建弹性 AI 基础设施。通过四个不同行业的精选用例,探索这些策略如何应用于现实场景。
这门自助式速成课程向学员介绍 Google Cloud 提供的灵活全面的基础架构和平台服务,其中着重介绍了 Compute Engine。学员将通过一系列视频讲座、演示和动手实验,探索和部署各种解决方案元素,包括网络、虚拟机和应用服务等基础架构组件。您将学习如何通过控制台和 Cloud Shell 使用 Google Cloud。您还将了解云架构师角色、基础架构设计方法以及虚拟网络配置和虚拟私有云 (VPC)、项目、网络、子网、IP 地址、路由及防火墙规则。
“生成式 AI 应用:改变工作方式”是 Generative AI Leader 学习路线的第四门课程。本课程介绍 Google 的生成式 AI 应用,例如 Gemini for Workspace 和 NotebookLM。它将引导您逐一了解接地、检索增强生成、构建有效提示和构建自动化工作流等概念。
“生成式 AI: 全面了解生成式 AI”是 Generative AI Leader 学习路线中的第三门课程。生成式 AI 正在改变我们的工作方式,以及我们与周围世界的互动方式。作为领导者,应该如何利用生成式 AI 来推动实现实际的业务成果?在本课程中,您将探索构建生成式 AI 解决方案的不同层级、Google Cloud 的产品,以及选择解决方案时需要考虑的因素。
“生成式 AI: 剖析基本概念”是 Generative AI Leader 学习路线中的第二门课程。在本课程中,您将了解生成式 AI 的基本概念。您要探索 AI、机器学习和生成式 AI 之间的区别,了解各种数据类型如何赋能生成式 AI,从而应对各种业务挑战。您还将深入了解 Google Cloud 应对基础模型局限性的策略,以及负责任和安全的 AI 开发与部署面临着哪些关键挑战。
“生成式 AI:不只是聊天机器人”是 Generative AI Leader 学习路线中的第一门课程。学习本课程没有知识门槛。本课程旨在帮助您超越对聊天机器人的基本认知,探索生成式 AI技术为您的组织带来的真正潜力。您将探索基础模型和提示工程等概念,这些知识对利用生成式 AI 的强大功能至关重要。本课程还将说明,为组织制定成功的生成式 AI 策略时,需要考虑哪些重要因素。
Welcome to the Cloud TPUs course. We'll explore the advantages and disadvantages of TPUs in various scenarios and compare different TPU accelerators to help you choose the right fit. You'll learn strategies to maximize performance and efficiency for your AI models and understand the significance of GPU/TPU interoperability for flexible machine learning workflows. Through engaging content and practical demos, we'll guide you step-by-step in leveraging TPUs effectively.
Curious about the powerful hardware behind AI? This course breaks down performance-optimized AI computers, showing you why they're so important. We'll explore how CPUs, GPUs, and TPUs make AI tasks super fast, what makes each one unique, and how AI software gets the most out of them. By the end, you'll know exactly how to pick the right compute for your AI projects, helping you make smart choices for your AI workkoads.
Ready to get started with AI Hypercomputers? This course makes it easy! We'll cover the basics of what they are and how they help AI with AI workloads. You'll learn about the different components inside a hypercomputer, like GPUs, TPUs, and CPUs, and discover how to pick the right deployment approach for your needs.
完成用 Chrome 企业进阶版安全功能保护云中的数据流量这一技能徽章课程,赢取技能徽章。在此课程中,您将学习 如何利用 Chrome Enterprise 进阶版为关键应用与服务筑牢安全访问屏障,依托现代化 零信任平台提升安全状态,借助基于身份和情境感知的访问权限控制安全分配资源权限,以及通过客户端连接器支持混合云工作负载稳定运行。
完成在 Google Cloud 上使用 Machine Learning API 课程,赢取高级技能徽章。 在本课程中,您将了解以下机器学习和 AI 技术的基本功能: Cloud Vision API、Cloud Translation API 和 Cloud Natural Language API。
完成 Google Workspace 工具使用入门课程,赢取入门技能徽章。在此课程中,您将了解 Google 的协作平台 并学习如何使用 Gmail、Google 日历、Meet、Google 云端硬盘、Google 表格和 AppSheet。
AI inference is the process of using a trained machine learning model to make predictions on new, unseen data by applying learned patterns. This course is designed for developers, data scientists, and ML engineers interested in quickly deploying AI inference services on Cloud Run. It is useful for those familiar with cloud-based serverless application deployment solutions, but who may not have experience with running AI inference using Google Cloud serverless products. The course includes examples that deploys a model for AI inference with GPUs and integrates gen AI apps with data storage services.
This course is designed for Google Cloud developers and DevOps engineers who have basic knowledge of the Google Cloud console and are responsible for configuring Gemini Code Assist for an organization. The course introduces the benefits of Gemini Code Assist and compares the features of the different Gemini Code Assist editions. The course also shows you how to configure and manage Gemini Code Assist within an organization.
This course is designed for app developers and DevOps engineers who want to work smarter by using Gemini CLI, a generative AI agent made for the terminal and powered by Gemini. This course discusses Gemini CLI installation and configuration, and introduces use cases and security best practices. It explains commands, tools, MCP servers, and extensions. With a hands-on exercise, you'll install and configure Gemini CLI and use it to analyze code and build and modify an app.
本课程专为各个级别的开发者打造,您将学到 Gemini Code Assist 的核心特性和功能。Gemini Code Assist 依托 AI 技术,可协助您在 Google Cloud 上进行应用开发。从智能代码建议、自动补全、实时错误检测到重构辅助,您将发现 Gemini Code Assist 如何显著提升开发效率和代码质量,帮助您节省宝贵时间,专注于更具价值和趣味性的任务。
本课程介绍了 AI 可解释性和透明度的相关概念,探讨了 AI 透明度对于开发者和工程师的重要性。同时探索了有助于在数据和 AI 模型中实现可解释性和透明度的实用方法及工具。
本课程介绍了 Responsible AI 的概念和 AI 原则,还介绍了在 AI/机器学习实践中识别公平性与偏见以及减少偏见的实用技巧,同时探索了使用 Google Cloud 产品和开源工具来实施 Responsible AI 最佳实践的实用方法和工具。
本课程介绍 AI 隐私保护和安全方面的重要主题,还将探索使用 Google Cloud 产品和开源工具实施建议的 AI 隐私保护和安全实践的实用方法和工具。
在本次课程中,探索 AI 赋能的搜索技术、工具和应用。学习利用向量嵌入的语义搜索、融合语义和关键字的混合搜索方法,以及检索增强生成 (RAG) 技术,以打造基于事实的 AI 智能体,尽可能减少 AI 幻觉。获取 Vertex AI Vector Search 实战经验,打造您自己的智能搜索引擎。
本课程致力于为您提供所需的知识和工具,让您能够了解 MLOps 团队在部署和管理生成式 AI 模型以及探索 Vertex AI 如何帮助 AI 团队简化 MLOps 流程时面临的独特挑战,并帮助您在生成式 AI 项目中取得成功。
本课程介绍 Vertex AI Studio,这是一种用于与生成式 AI 模型交互、围绕业务创意进行原型设计并在生产环境中落地的工具。通过沉浸式应用场景、富有吸引力的课程和实操实验,您将探索从提示到产品的整个生命周期,了解如何将 Vertex AI Studio 用于多模态 Gemini 应用、提示设计、提示工程和模型调优。本课程的目的在于帮助您利用 Vertex AI Studio,在自己的项目中充分发掘生成式 AI 的潜力。
本课程教您如何使用深度学习来创建图片标注模型。您将了解图片标注模型的不同组成部分,例如编码器和解码器,以及如何训练和评估模型。学完本课程,您将能够自行创建图片标注模型并用来生成图片说明。
本课程向您介绍 Transformer 架构和 Bidirectional Encoder Representations from Transformers (BERT) 模型。您将了解 Transformer 架构的主要组成部分,例如自注意力机制,以及该架构如何用于构建 BERT 模型。您还将了解可以使用 BERT 的不同任务,例如文本分类、问答和自然语言推理。完成本课程估计需要大约 45 分钟。
本课程简要介绍了编码器-解码器架构,这是一种功能强大且常见的机器学习架构,适用于机器翻译、文本摘要和问答等 sequence-to-sequence 任务。您将了解编码器-解码器架构的主要组成部分,以及如何训练和部署这些模型。在相应的实验演示中,您将在 TensorFlow 中从头编写简单的编码器-解码器架构实现代码,以用于诗歌生成。
本课程将向您介绍注意力机制,这是一种强大的技术,可令神经网络专注于输入序列的特定部分。您将了解注意力的工作原理,以及如何使用它来提高各种机器学习任务的性能,包括机器翻译、文本摘要和问题解答。
本课程向您介绍扩散模型。这类机器学习模型最近在图像生成领域展现出了巨大潜力。扩散模型的灵感来源于物理学,特别是热力学。过去几年内,扩散模型成为热门研究主题并在整个行业开始流行。Google Cloud 上许多先进的图像生成模型和工具都是以扩散模型为基础构建的。本课程向您介绍扩散模型背后的理论,以及如何在 Vertex AI 上训练和部署此类模型。
在本课程中,您将学习如何使用 Google 的可移植 UI 工具包 Flutter 来开发应用,并将开发的应用与 Google 的生成式 AI 模型家族 Gemini 相集成。您还将练习使用 Vertex AI Agent Builder,这是 Google 为构建和管理 AI 智能体及应用而提供的平台。
通过使用生成式 AI,提升网站导航体验,从而为您的用户提供更好的搜索体验。在本课程中,您将学习如何通过 Vertex AI Search 为您的网站用户提供生成式搜索体验,使他们能够发现网站提供的内容。作为网站编辑者,您还将学习如何使用生成式 AI 快速且高效地翻译内容,并根据建议对内容进行改进。
生成式 AI 应用可以提供大语言模型 (LLM) 问世前几乎不可能实现的全新用户体验。作为应用开发者,您要如何利用生成式 AI 在 Google Cloud 上构建更具吸引力且功能强大的应用? 在本课程中,您将了解生成式 AI 应用,以及如何利用提示设计和检索增强生成 (RAG) 技术,构建使用 LLM 的强大应用。您将了解可用于生产用途且适合生成式 AI 应用的架构,并构建一个基于 LLM 和 RAG 的聊天应用。
本课程是 Google Cloud 数据分析认证计划的第四门课程(共五门课程)。在本课程中,您将重点学习在云端可视化数据的相关技能,其中数据可视化可分为五个关键阶段:讲故事、规划、探索数据、构建可视化图表以及与他人共享数据。您还将获得实操经验,尝试使用 UI(界面)/UX(用户体验)技能来制作线框图,从而设计出有影响力的云原生可视化图表,并使用云原生数据可视化工具来探索数据集、创建报告和构建信息中心,从而推动决策并促进协作。
本课程是 Google Cloud 数据分析认证计划的第五门课程(共五门)。在本课程中,你将综合运用前 4 门课程所学的基础知识和技能,实操完成一个结业项目,全面探索整个数据生命周期。您将练习使用云端工具来有效地获取、存储、处理、分析、直观呈现数据并传达数据分析洞见。课程结束时,您将完成一个项目,证明您在以下方面的熟练程度:高效地设计数据结构以整理来自多个来源的数据、向不同利益相关方展示解决方案,以及使用云端软件直观呈现数据分析洞见。您还将更新个人简历并练习面试技巧,为求职申请与面试环节做好准备。
This is the third of five courses in the Google Cloud Data Analytics Certificate. In this course, you’ll begin by getting an overview of the data journey, from collection to insights. You’ll then learn how to use SQL to transform raw data into a usable format. Next, you’ll learn how to transform high volumes of data with a data pipeline. Finally, you’ll gain experience applying transformation strategies to real data sets to solve business needs.
As organizations move their data and applications to the cloud, they must address new security challenges. The Trust and Security with Google Cloud course explores the basics of cloud security, the value of Google Cloud's multilayered approach to infrastructure security, and how Google earns and maintains customer trust in the cloud. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.
Many traditional enterprises use legacy systems and applications that can't stay up-to-date with modern customer expectations. Business leaders often have to choose between maintaining their aging IT systems or investing in new products and services. "Modernize Infrastructure and Applications with Google Cloud" explores these challenges and offers solutions to overcome them by using cloud technology. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.
Artificial intelligence (AI) and machine learning (ML) represent an important evolution in information technologies that are quickly transforming a wide range of industries. “Innovating with Google Cloud Artificial Intelligence” explores how organizations can use AI and ML to transform their business processes. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.
在本课程中,您将了解 Gemini(Google Cloud 推出的一款依托生成式 AI 的协作工具)如何帮助您使用 Google 产品和服务开发、测试、部署和管理应用。在 Gemini 的协助下,您可以学习如何开发和构建 Web 应用、修复应用中的错误、开发测试和查询数据。您可以通过实操实验了解如何利用 Gemini 来改进软件开发生命周期 (SDLC)。 Duet AI 已更名为 Gemini,这是我们的新一代模型。
Cloud technology can bring great value to an organization, and combining the power of cloud technology with data has the potential to unlock even more value and create new customer experiences. “Exploring Data Transformation with Google Cloud” explores the value data can bring to an organization and ways Google Cloud can make data useful and accessible. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.
本课程是 Google Cloud 数据分析认证计划的第二门课程(共五门)。在本课程中,您将探索数据的结构形式和组织方式。您将获得数据湖仓一体架构和云组件(如 BigQuery、Google Cloud Storage 和 DataProc)的实操经验,以便高效地存储、分析和处理大型数据集。
完成入门级技能徽章课程在 Google Cloud 上为机器学习 API 准备数据,展示以下技能: 使用 Dataprep by Trifacta 清理数据、在 Dataflow 中运行数据流水线、在 Dataproc 中创建集群和运行 Apache Spark 作业,以及调用机器学习 API,包括 Cloud Natural Language API、Google Cloud Speech-to-Text API 和 Video Intelligence API。
完成构建安全的 Google Cloud 网络课程,赢取技能徽章。在此课程中,您将了解与网络有关的众多 资源,以便在 Google Cloud 上构建、扩缩和保护自己的应用。
完成“在 Google Cloud 上设置应用开发环境”课程,赢取技能徽章;通过该课程,您将了解如何使用以下技术的基本功能来构建和连接以存储为中心的云基础设施: Cloud Storage、Identity and Access Management、Cloud Functions 和 Pub/Sub。
完成入门级技能徽章课程为 Compute Engine 实现云负载均衡,展示以下方面的技能: 在 Compute Engine 中创建和部署虚拟机 以及配置网络和应用负载均衡器。
Google Cloud 云计算基础课程面向没有或很少有云计算基础或经验的人群。本课程概述了云计算基础知识、大数据和机器学习的核心概念,以及 Google Cloud 在其中的定位与应用方式。 完成本系列课程后,学员将能够清晰阐述这些概念,并掌握一些实际操作技能。 课程应按以下顺序完成: 1. Google Cloud 云计算基础课程:云计算基础知识 2. Google Cloud 云计算基础课程:Google Cloud 中的基础设施 3. Google Cloud 云计算基础课程:Google Cloud 中的网络服务和安全性 4. Google Cloud 云计算基础课程:Google Cloud 中的数据、机器学习和 AI 本课程是该系列课程的最后一门,回顾了托管式大数据服务、机器学习及其价值,以及如何通过获得技能徽章来进一步展示您在 Google Cloud 方面的技能。
本课程是 Google Cloud 数据分析认证的第一门课程(共五门)。在本课程中,您将认识云数据分析领域,并了解云数据分析师在数据获取、存储、处理和可视化方面的角色和职责。您将探索 BigQuery 和 Cloud Storage 等基于 Google Cloud 的工具的架构,以及如何使用这些工具有效地设计数据结构,以及展示和报告数据。
There's much excitement about cloud technology and digital transformation, but often many unanswered questions. For example: What is cloud technology? What does digital transformation mean? How can cloud technology help your organization? Where do you even begin? If you've asked yourself any of these questions, you're in the right place. This course provides an overview of the types of opportunities and challenges that companies often encounter in their digital transformation journey. If you want to learn about cloud technology so you can excel in your role and help build the future of your business, then this introductory course on digital transformation is for you. This course is part of the Cloud Digital Leader learning path.
完成中级技能徽章课程使用多模态 Gemini 和多模态 RAG 检查富文档,展示您在以下方面的技能: 将多模态与 Gemini 配合使用,从而使用多模态提示从文本数据和视觉数据中提取信息、生成视频说明、 检索视频中不包含的额外信息; 将多模态检索增强生成 (RAG) 与 Gemini 配合使用,以构建包含文本和图片的文档的元数据、获取所有相关文本块并输出引用。
完成“在 Google Cloud 上使用 TensorFlow 进行图片分类”课程,赢取中级技能徽章 。在此课程中,您将学习如何使用 TensorFlow 和 Vertex AI 来创建和训练机器学习模型。您将主要使用 Vertex AI Workbench 上用户管理的 笔记本。
完成增强 BigLake 数据的元数据管理与数据发现能力这一技能徽章课程,展示您在 BigQuery、 BigLake 和 Dataplex Universal Catalog 方面的技能。您将创建 BigLake 表,并增强表数据的元数据管理与数据发现能力。
完成入门技能徽章课程使用 Dataplex 构建数据网格,展示以下方面的技能:使用 Dataplex 构建数据网格, 以在 Google Cloud 上实现数据安全、治理和发现。您将在 Dataplex 中练习和测试自己在标记资产、分配 IAM 角色和评估数据质量方面的技能。
Google Cloud 云计算基础课程面向几乎没有云计算背景或经验的人士。本课程概述了云计算基础知识、大数据和机器学习的核心概念,以及 Google Cloud 在其中的定位与应用方式。 完成本课程系列后,学员将能够阐述这些概念,并展示一定的实操技能。 课程应按以下顺序完成: 1. Google Cloud 云计算基础课程:云计算基础知识 2. Google Cloud 云计算基础课程:Google Cloud 中的基础设施 3. Google Cloud 云计算基础课程:Google Cloud 中的网络服务和安全性 4. Google Cloud 云计算基础课程:Google Cloud 中的数据、机器学习和 AI 本课是第三门课程,介绍云端自动化和管理工具以及如何构建安全网络。
Google Cloud 云计算基础课程面向云计算零基础或经验较少的人群。本课程概述了云计算基础知识、大数据和机器学习的核心概念,以及 Google Cloud 在其中的定位与应用方式。 完成本系列课程后,学员将能够清晰阐述这些概念,并掌握部分实操技能。 课程应按以下顺序完成: 1. Google Cloud 云计算基础课程:云计算基础知识 2. Google Cloud 云计算基础课程:Google Cloud 中的基础设施 3. Google Cloud 云计算基础课程:Google Cloud 中的网络服务和安全性 4. Google Cloud 云计算基础课程:Google Cloud 中的数据、机器学习和 AI
Google Cloud 云计算基础课程面向云计算零基础或经验较少的人群。本课程概述了云计算基础知识、大数据和机器学习的核心概念,以及 Google Cloud 在其中的定位与应用方式。 完成本系列课程后,学员将能够清晰阐述这些概念,并掌握部分实操技能。 课程应按以下顺序完成: 1. Google Cloud 云计算基础课程:云计算基础知识 2. Google Cloud 云计算基础课程:Google Cloud 中的基础设施 3. Google Cloud 云计算基础课程:Google Cloud 中的网络服务和安全性 4. Google Cloud 云计算基础课程:Google Cloud 中的数据、机器学习和 AI 本课是第一门课程,概述了云计算、Google Cloud 的使用方式以及各种计算选项。
Organizations of all sizes are embracing the power and flexibility of the cloud to transform how they operate. However, managing and scaling cloud resources effectively can be a complex task. Scaling with Google Cloud Operations explores the fundamental concepts of modern operations, reliability, and resilience in the cloud, and how Google Cloud can help support these efforts. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.
在本课程中,您将了解 Google Cloud 中依托生成式 AI 技术的协作工具 Gemini 如何帮助开发者构建应用。您将学习如何向 Gemini 输入提示,让其为您解释代码、推荐 Google Cloud 服务并为您的应用生成代码。您将通过实操实验体验 Gemini 对应用开发工作流的改进作用。 Duet AI 已更名为 Gemini,这是我们的新一代模型。
这是 Google Cloud 网络安全证书计划的第五门课程(共五门)。在本课程中,您将综合运用云安全原则、风险管理、漏洞识别、事件管理和危机沟通等关键概念完成互动式结业项目。此外,您还将完成简历更新,并践行所学到的所有新面试技巧,以便后期能够自信地申请和面试该领域的工作。
本课程是 Google Cloud 网络安全认证证书的第四门课,该证书共包括五门课程。在本课程中,您将重点发展在日志记录、安全防护与提醒监控方面的能力,并掌握缓解攻击的技术方法。您将掌握一系列宝贵知识,包括自定义威胁情报源、管理突发事件、开展危机沟通、进行根本原因分析,以及处理突发事件响应与后续沟通。借助 Google Cloud 工具,您将学习识别失陷指标,并为业务连续性和灾难恢复做好准备。除技术技能外,您还将持续更新简历并练习面试技巧。
本课程是 Google Cloud 网络安全认证证书的第三门课,该证书共包括五门课程。在本课中,您将学习云环境中的身份管理与访问权限控制原则,涵盖 AAA(身份验证、授权和审计)、凭证处理和证书管理等关键内容。您还将深入了解威胁与漏洞管理、云原生原则以及数据保护措施等重要主题。完成本课后,您将具备保护云端资源和组织敏感信息所需的专业技能与知识。此外,您还将继续利用职业发展资源,提升面试技巧,为下一阶段的职业发展做好准备。
本课程是 Google Cloud 网络安全认证证书的第二门课,该证书共包括五门课程。在本课程中,您将深入学习广泛使用的云风险管理框架,全面了解安全领域、合规生命周期,以及 HIPAA、NIST CSF 和 SOC 等行业标准。您将掌握风险识别、安全控制措施实施、合规性评估以及数据保护管理方面的技能。此外,您还将获得使用 Google Cloud 和多云环境中专用于风险与合规管理的工具的实践经验。本课程还涵盖了求职与面试准备技巧,为深入理解并有效应对复杂的云风险管理体系提供了全面的基础支持。
本课程是 Google Cloud 网络安全认证证书的第一门课,该证书共包括五门课程。本课程将带您了解网络安全的基础知识,包括安全生命周期、数字化转型以及核心云计算概念。您将识别初级云安全分析师常用的自动化工具。
This video covers how to use Gemini in Gmail to summarize emails, find information, and draft replies, helping you manage your inbox more efficiently.
This video covers five key ways to use Google's AI tools, including Gemini in Workspace, the Gemini app, and NotebookLM, to enhance your daily productivity.
This video covers how to build a personalized "Work with Me" agent using Gemini Gems, which helps streamline foundational feedback and makes your meetings more strategic and efficient.
完成Eventarc 使用入门这一技能徽章课程,赢取技能徽章。 在这门课程中,您将使用 Eventarc 为不同资源创建事件触发器,包括 Pub/Sub 主题和 Cloud Storage 存储桶。
完成在 Google Cloud 上实现 CI/CD 流水线技能徽章课程,赢取中级技能徽章。 您将学习如何使用 Artifact Registry、Cloud Build 和 Cloud Deploy。您将与 Google Cloud 控制台、Google Cloud CLI、Cloud Run 和 GKE 互动。本课程将介绍如何构建持续集成 流水线,存储和保护工件,扫描漏洞,证明已批准版本 的有效性。此外,您还将获得在 GKE 和 Cloud Run 中 部署应用的实操经验。
完成在 Google Cloud 上使用 Terraform 构建基础设施技能徽章中级课程, 展示您在以下方面的技能:在使用 Terraform 时遵循基础设施即代码 (IaC) 原则;利用 Terraform 配置 来预配和管理 Google Cloud 资源;管理有效状态(本地和远程);以及将 Terraform 代码模块化,以方便重复使用和整理。
完成中级技能徽章课程“使用 Gemini 和 Streamlit 开发生成式 AI 应用”,展示您在以下方面的技能: 文本生成、通过 Python SDK 和 Gemini API 应用函数调用,以及通过 Cloud Run 部署 Streamlit 应用。 您将了解如何以不同方式通过提示来让 Gemini 生成文本、使用 Cloud Shell 进行测试,以及如何迭代 Streamlit 应用,随后将其封装成 Docker 容器并部署在 Cloud Run 中。
完成中级技能徽章课程使用 Security Command Center 消除 威胁和漏洞,展示您在以下方面的技能: 预防和管理环境威胁、识别和缓解应用漏洞,以及应对安全异常。
完成在 Google Cloud 中管理 Kubernetes这一中级技能徽章课程, 展示您在以下方面的技能:使用 kubectl 管理部署、监控并 调试在 Google Kubernetes Engine (GKE) 上运行的应用,以及持续交付技术。
完成中级技能徽章课程通过 BigQuery ML 创建机器学习模型,展示您在以下方面的技能: 使用 BigQuery ML 创建和评估机器学习模型,以执行数据预测。
“生成式 AI 智能体:助力组织转型”是“Gen AI Leader”学习路线中的第五门课程,也是最后一门课程。本课程探讨了组织如何使用量身定制的生成式 AI 智能体,帮助应对特定的业务挑战。您将亲自动手构建一个基本的生成式 AI 智能体,并探索这些智能体的组成部分,例如模型、推理循环以及各种工具。
此课程将探索如何使用 AI 功能套件 Gemini in BigQuery 为“数据到 AI”工作流提供助力。其中涉及到的功能包括数据探索和准备、代码生成和问题排查,以及工作流发现和可视化。此课程包含概念解释、真实使用场景以及实操实验等内容,可帮助数据从业者提升效率并加快流水线开发速度。
本课程展示了如何在 BigQuery 中使用 AI/机器学习模型处理生成式 AI 任务。通过一个涉及客户关系管理的实际应用场景,您将学习到使用 Gemini 模型解决业务问题的工作流程。为了便于理解,本课程还将通过使用 SQL 查询和 Python 笔记本的编码解决方案提供分步指导。
了解 BigQuery 机器学习推理功能,以及数据分析师为何应使用该功能,它有哪些应用场景,有哪些受支持的机器学习模型。您还将了解如何在 BigQuery 中创建和管理这些机器学习模型。
在本课程中,您将了解 Gemini(Google Cloud 的生成式 AI 赋能的协作工具)如何帮助分析客户数据并预测产品销售情况。此外,您还将了解如何在 BigQuery 中使用客户数据来识别、开发新客户并对其进行分类。通过动手实验,您将体验 Gemini 如何改进数据分析和机器学习工作流。 Duet AI 已更名为 Gemini,这是我们的新一代模型。
完成 在 Vertex AI 中设计提示入门技能徽章课程,展示以下方面的技能: Vertex AI 中的提示工程、图片分析和多模态生成式技术。探索如何编写有效的提示,指导生成式 AI 输出, 以及将 Gemini 模型应用于真实的营销场景。
随着企业对人工智能和机器学习的应用越来越广泛,以负责任的方式构建这些技术也变得更加重要。但对很多企业而言,真正践行 Responsible AI 并非易事。如果您有意了解如何在组织内践行 Responsible AI,本课程正适合您。 本课程将介绍 Google Cloud 目前如何践行 Responsible AI,以及从中总结的最佳实践和经验教训,便于您以此为框架构建自己的 Responsible AI 方法。
这是一节入门级微课程,旨在解释什么是负责任的 AI、它的重要性,以及 Google 如何在自己的产品中实现负责任的 AI。此外,本课程还介绍了 Google 的 7 个 AI 开发原则。
这是一节入门级微学习课程,探讨什么是大型语言模型 (LLM)、适合的应用场景以及如何使用提示调整来提升 LLM 性能,还介绍了可以帮助您开发自己的 Gen AI 应用的各种 Google 工具。
这是一节入门级微课程,旨在解释什么是生成式 AI、它的用途以及与传统机器学习方法的区别。该课程还介绍了可以帮助您开发自己的生成式 AI 应用的各种 Google 工具。