Kevin Degila
Mitglied seit 2021
Silver League
9555 Punkte
Mitglied seit 2021
„Generative KI-Apps heben Ihre Arbeit auf das nächste Level“ ist der vierte Kurs des Lernpfads „Generative AI Leader“. In diesem Kurs werden die auf generativer KI basierenden Anwendungen von Google vorgestellt, zum Beispiel Gemini für Workspace und NotebookLM. Darin werden Konzepte wie Fundierung, Retrieval-Augmented Generation, das Erstellen effektiver Prompts und das Entwickeln automatisierter Workflows erläutert.
„Die vielfältigen Formen generativer KI“ ist der dritte Kurs des Lernpfads „Generative AI Leader“. Generative KI verändert die Art und Weise, wie wir arbeiten und mit der Welt um uns herum interagieren. Aber wie können Sie als Führungskraft die Möglichkeiten von KI nutzen, um echte Geschäftsergebnisse zu erzielen? In diesem Kurs lernen Sie die verschiedenen Ebenen der Entwicklung von generativen KI-Lösungen, die Angebote von Google Cloud und die Faktoren kennen, die bei der Auswahl einer Lösung zu berücksichtigen sind.
„Generative KI: Grundlegende Konzepte“ ist der zweite Kurs des Lernpfads „Generative AI Leader“. In diesem Kurs lernen Sie die grundlegenden Konzepte der generativen KI kennen. Sie erfahren, wie sich KI, ML und generative KI unterscheiden und wie generative KI geschäftliche Herausforderungen mithilfe verschiedener Datentypen bewältigt. Außerdem erhalten Sie Einblicke in die Strategien von Google Cloud, um die Einschränkungen von Foundation Models zu überwinden, und in die wichtigsten Herausforderungen für eine verantwortungsbewusste und sichere KI-Entwicklung und ‑Bereitstellung.
„Generative KI ist mehr als nur Chatbots“ ist der erste Kurs des Lernpfads „Generative AI Leader“ und hat keine Voraussetzungen. In diesem Kurs geht es nicht nur um die Grundlagen von Chatbots, sondern auch um das wahre Potenzial von generativer KI für Ihr Unternehmen. Sie lernen Konzepte wie Foundation Models und Prompt Engineering kennen, die für die Nutzung der Leistungsfähigkeit von generativer KI entscheidend sind. Außerdem werden wichtige Überlegungen behandelt, die Sie bei der Entwicklung einer erfolgreichen Strategie für generative KI für Ihr Unternehmen berücksichtigen sollten.
This is the first of two Quests of hands-on labs is derived from the exercises from the book Data Science on Google Cloud Platform, 2nd Edition by Valliappa Lakshmanan, published by O'Reilly Media, Inc. In this first Quest, covering up through chapter 8, you are given the opportunity to practice all aspects of ingestion, preparation, processing, querying, exploring and visualizing data sets using Google Cloud tools and services.
Earn a skill badge by completing the Explore Machine Learning Models with Explainable AI quest, where you will learn how to do the following using Explainable AI: build and deploy a model to an AI platform for serving (prediction), use the What-If Tool with an image recognition model, identify bias in mortgage data using the What-If Tool, and compare models using the What-If Tool to identify potential bias. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete this skill badge quest and the final assessment challenge lab to receive a skill badge that you can share with your network.
Big data, machine learning, and scientific data? It sounds like the perfect match. In this advanced-level quest, you will get hands-on practice with GCP services like Big Query, Dataproc, and Tensorflow by applying them to use cases that employ real-life, scientific data sets. By getting experience with tasks like earthquake data analysis and satellite image aggregation, Scientific Data Processing will expand your skill set in big data and machine learning so you can start tackling your own problems across a spectrum of scientific disciplines.
Mit dem Skill-Logo zum Kurs Daten für ML-APIs in Google Cloud vorbereiten weisen Sie Grundkenntnisse in folgenden Bereichen nach: Bereinigen von Daten mit Dataprep von Trifacta, Ausführen von Datenpipelines in Dataflow, Erstellen von Clustern und Ausführen von Apache Spark-Jobs in Dataproc sowie Aufrufen von ML-APIs, einschließlich der Cloud Natural Language API, Cloud Speech-to-Text API und Video Intelligence API.
In this introductory-level course, you get hands-on practice with the Google Cloud’s fundamental tools and services. Optional videos are provided to provide more context and review for the concepts covered in the labs. Google Cloud Essentials is a recommendeded first course for the Google Cloud learner - you can come in with little or no prior cloud knowledge, and come out with practical experience that you can apply to your first Google Cloud project. From writing Cloud Shell commands and deploying your first virtual machine, to running applications on Kubernetes Engine or with load balancing, Google Cloud Essentials is a prime introduction to the platform’s basic features.