Jay Gohil
成为会员时间:2020
白银联赛
6900 积分
成为会员时间:2020
完成在 Google Cloud 上构建网站技能徽章课程,赢取入门级技能徽章。本课程以 Get Cooking in Cloud 系列视频为基础, 涵盖以下主题:在 Cloud Run 上部署网站在 Compute Engine 上托管 Web 应用在 Google Kubernetes Engine 上创建、部署和扩缩网站使用 Cloud Build 从单体式应用迁移到微服务架构
完成入门级技能徽章课程“从 BigQuery 数据中挖掘数据洞见”,展示您在以下方面的技能: 编写 SQL 查询、查询公共表、将示例数据加载到 BigQuery 中、 在 BigQuery 中使用查询验证器排查常见的语法错误,以及通过连接到 BigQuery 数据在 Looker Studio 中 创建报告。
完成“在 Google Cloud 上设置应用开发环境”课程,赢取技能徽章;通过该课程,您将了解如何使用以下技术的基本功能来构建和连接以存储为中心的云基础设施: Cloud Storage、Identity and Access Management、Cloud Functions 和 Pub/Sub。
In this quest you will learn about the four Google Cloud website architectures available to ensure that your website is available and scalable. Looking for a hands on challenge lab to demonstrate your skills and validate your knowledge? On completing this quest, finish the additional challenge lab at the end of this Build a Website on Google Cloud to receive an exclusive Google Cloud digital badge. This quest is based on the video series Get Cooking in Cloud.
众所周知,机器学习是发展最快的技术领域之一, Google Cloud Platform 在推动其发展方面发挥了重要作用。 GCP 提供了一系列 API,几乎可以满足任何机器学习作业的需求。在 本入门课程中,您将了解机器学习在语言处理方面的运用, 通过实操实验学习 如何从文本中提取实体,执行情感和语法分析,以及 使用 Speech-to-Text API 进行转写。
In this series of labs you will learn how to use BigQuery to analyze NCAA basketball data with SQL. Build a Machine Learning Model to predict the outcomes of NCAA March Madness basketball tournament games.
Want to scale your data analysis efforts without managing database hardware? Learn the best practices for querying and getting insights from your data warehouse with this interactive series of BigQuery labs. BigQuery is Google's fully managed, NoOps, low cost analytics database. With BigQuery you can query terabytes and terabytes of data without having any infrastructure to manage or needing a database administrator. BigQuery uses SQL and can take advantage of the pay-as-you-go model. BigQuery allows you to focus on analyzing data to find meaningful insights.
This Quest is most suitable for those working in a technology or finance role who are responsible for managing Google Cloud costs. You’ll learn how to set up a billing account, organize resources, and manage billing access permissions. In the hands-on labs, you'll learn how to view your invoice, track your Google Cloud costs with Billing reports, analyze your billing data with BigQuery or Google Sheets, and create custom billing dashboards with Looker Studio. References made to links in the videos can be accessed in this Additional Resources document.
在众多课程中,本入门课程独具特色。 这些实验经过精心设计,旨在让 IT 专业人员通过实践掌握 Google Cloud 认证 Associate Cloud Engineer 考核中的各项主题和服务内容。从 IAM 到网络组建和管理, 再到 Kubernetes Engine 部署,本课程将通过特定实验 检验您的 Google Cloud 知识掌握情况。请注意,虽然这些实操 实验有助于提升您的技能和能力,我们仍建议您同时查阅 考试指南和其他可用的备考资源。
完成入门级技能徽章课程为 Compute Engine 实现云负载均衡,展示以下方面的技能: 在 Compute Engine 中创建和部署虚拟机 以及配置网络和应用负载均衡器。
在此入门级挑战任务中,您可以使用 Google Cloud Platform 的基本工具和服务,开展真枪实弹的操作实训。“GCP 基本功能”是我们为 Google Cloud 学员推荐的第一项挑战任务。云知识储备微乎其微甚至零基础?不用担心!这项挑战任务会为您提供真枪实弹的实操经验,助您快速上手 GCP 项目。无论是要编写 Cloud Shell 命令还是部署您的第一台虚拟机,亦或是通过负载平衡机制或在 Kubernetes Engine 上运行应用,都可以通过“GCP 基本功能”了解该平台的基本功能之精要。点此观看 1 分钟视频,了解每个实验涉及的主要概念。
如果您是一位入门级云开发者, 在学习了“Google Cloud 基础知识”课程之后,想要寻求真正的实操机会,这门课程就是您的不二之选。您将获得宝贵的实操经验, 通过多个实验深入探索 Cloud Storage 以及 Monitoring 和 Cloud Functions 等其他关键应用服务。您将掌握一系列宝贵技能, 在 Google Cloud 的任何计划中,这些技能都能发挥作用。
TensorFlow is an open source software library for high performance numerical computation that's great for writing models that can train and run on platforms ranging from your laptop to a fleet of servers in the Cloud to an edge device. This quest takes you beyond the basics of using predefined models and teaches you how to build, train and deploy your own on Google Cloud.
This is the second of two Quests of hands-on labs derived from the exercises from the book Data Science on Google Cloud Platform, 2nd Edition by Valliappa Lakshmanan, published by O'Reilly Media, Inc. In this second Quest, covering chapter 9 through the end of the book, you extend the skills practiced in the first Quest, and run full-fledged machine learning jobs with state-of-the-art tools and real-world data sets, all using Google Cloud tools and services.
Machine Learning is one of the most innovative fields in technology, and the Google Cloud Platform has been instrumental in furthering its development. With a host of APIs, Google Cloud has a tool for just about any machine learning job. In this advanced-level course, you will get hands-on practice with machine learning at scale and how to employ the advanced ML infrastructure available on Google Cloud.
This is the first of two Quests of hands-on labs is derived from the exercises from the book Data Science on Google Cloud Platform, 2nd Edition by Valliappa Lakshmanan, published by O'Reilly Media, Inc. In this first Quest, covering up through chapter 8, you are given the opportunity to practice all aspects of ingestion, preparation, processing, querying, exploring and visualizing data sets using Google Cloud tools and services.
大数据、机器学习和人工智能是当今计算领域的热门话题, 但这些领域的专业性很强,因而很难找到 入门资料。幸运的是,Google Cloud 在这些领域提供了方便用户使用的服务, 通过本入门级课程,您可以 开始学习使用 BigQuery、Cloud Speech API 和 Video Intelligence 等工具。
Data Catalog is deprecated and will be discontinued on January 30, 2026. You can still complete this course if you want to. For steps to transition your Data Catalog users, workloads, and content to Dataplex Catalog, see Transition from Data Catalog to Dataplex Catalog (https://cloud.google.com/dataplex/docs/transition-to-dataplex-catalog). Data Catalog is a fully managed and scalable metadata management service that empowers organizations to quickly discover, understand, and manage all of their data. In this quest you will start small by learning how to search and tag data assets and metadata with Data Catalog. After learning how to build your own tag templates that map to BigQuery table data, you will learn how to build MySQL, PostgreSQL, and SQLServer to Data Catalog Connectors.
Earn a skill badge by completing the Explore Machine Learning Models with Explainable AI quest, where you will learn how to do the following using Explainable AI: build and deploy a model to an AI platform for serving (prediction), use the What-If Tool with an image recognition model, identify bias in mortgage data using the What-If Tool, and compare models using the What-If Tool to identify potential bias. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete this skill badge quest and the final assessment challenge lab to receive a skill badge that you can share with your network.
完成入门级技能徽章课程在 Google Cloud 上为机器学习 API 准备数据,展示以下技能: 使用 Dataprep by Trifacta 清理数据、在 Dataflow 中运行数据流水线、在 Dataproc 中创建集群和运行 Apache Spark 作业,以及调用机器学习 API,包括 Cloud Natural Language API、Google Cloud Speech-to-Text API 和 Video Intelligence API。
完成开发 Google Cloud 网络课程,赢取技能徽章。在此课程中,您将学习 部署和监控应用的多种方法,包括执行以下任务的方法:探索 IAM 角色并添加/移除 项目访问权限、创建 VPC 网络、部署和监控 Compute Engine 虚拟机、 编写 SQL 查询、在 Compute Engine 中部署和监控虚拟机,以及使用 Kubernetes 通过多种部署方法部署应用。