Jay Gohil
Participante desde 2020
Liga Prata
6900 pontos
Participante desde 2020
Ganhe o selo de habilidade introdutório ao concluir o curso Criar um site no Google Cloud. Este curso é baseado na série Get Cooking in Cloud e aborda os seguintes tópicos:Implantação de um site no Cloud RunHospedagem de um app da web no Compute EngineCriação, implantação e escalonamento do seu site no Google Kubernetes EngineMigração de um aplicativo monolítico para uma arquitetura de microsserviços usando o Cloud Build
Conclua o selo de habilidade introdutório Gerar insights a partir de dados do BigQuery para mostrar que você sabe gravar consultas SQL, consultar tabelas públicas e carregar dados de amostra no BigQuery, solucionar erros comuns de sintaxe com o validador de consultas no BigQuery e criar relatórios no Looker Studio fazendo a conexão com dados do BigQuery.
Conquiste um selo de habilidade ao concluir o curso Como configurar um ambiente de desenvolvimento de apps no Google Cloud. Nele, você aprende a criar e conectar uma infraestrutura em nuvem focada em armazenamento usando recursos básicos das seguintes tecnologias: Cloud Storage, Identity and Access Management, Cloud Functions e Pub/Sub.
Nesta missão, você aprenderá sobre os quatro tipos de arquiteturas de sites disponíveis no Google Cloud para garantir que seu site esteja disponível e escalável. Complete esta missão, incluindo o Challenge Lab no final, para receber um selo digital exclusivo do Google Cloud. O Challenge Lab não fornece etapas prescritivas, mas exige a criação de soluções com o mínimo de orientação e testará suas habilidades em tecnologia do Google Cloud. Essa missão é baseada na série de vídeos Get Cooking in Cloud.
Não é novidade que o machine learning é um dos campos que mais cresce na área de tecnologia, e o Google Cloud Platform tem sido fundamental para esse desenvolvimento. Com diversas APIs, o GCP tem uma ferramenta para praticamente todos os jobs de machine learning. Neste curso introdutório, você vai praticar a aplicação do machine learning ao processamento de linguagem em laboratórios que permitem extrair entidades de textos e realizar análises sintáticas e de sentimento, além de usar a API Speech-to-Text para transcrição.
In this series of labs you will learn how to use BigQuery to analyze NCAA basketball data with SQL. Build a Machine Learning Model to predict the outcomes of NCAA March Madness basketball tournament games.
Want to scale your data analysis efforts without managing database hardware? Learn the best practices for querying and getting insights from your data warehouse with this interactive series of BigQuery labs. BigQuery is Google's fully managed, NoOps, low cost analytics database. With BigQuery you can query terabytes and terabytes of data without having any infrastructure to manage or needing a database administrator. BigQuery uses SQL and can take advantage of the pay-as-you-go model. BigQuery allows you to focus on analyzing data to find meaningful insights.
Esta Quest é ideal para pessoas que atuam na área de tecnologia ou finanças e são responsáveis pelo gerenciamento de custos do GCP. Ela mostrará como configurar uma conta de faturamento, organizar recursos e gerenciar permissões de acesso às informações de faturamento. Nos laboratórios práticos, você aprenderá a visualizar sua fatura, acompanhar os custos do GCP com relatórios específicos, analisar os dados de faturamento com o BigQuery ou o Planilhas Google e criar painéis de faturamento personalizados com o Data Studio.
Este curso introdutório conta com recursos exclusivos entre as outras ofertas de cursos. Os laboratórios foram criados para oferecer um treinamento prático aos profissionais de TI nos tópicos e serviços que aparecem na Certificação em Google Cloud Associate Cloud Engineer. Do IAM à rede, até a implantação do Kubernetes Engine, este curso é composto por laboratórios específicos que vão testar seus conhecimentos sobre o Google Cloud. Embora a prática com esses laboratórios ajude a desenvolver suas habilidades e conhecimento, recomendamos que você também estude pelo guia do exame e por outros recursos de preparação disponíveis.
Conclua o selo de habilidade introdutório Implementação do Cloud Load Balancing no Compute Engine para demonstrar que você sabe: criar e implantar máquinas virtuais no Compute Engine; configurar balanceadores de carga de rede e de aplicativo.
Nesta Quest de nível introdutório, você terá acesso a treinamentos práticos com os principais serviços e ferramentas do Google Cloud Platform. A Quest "GCP Essentials" é a primeira recomendação para quem está aprendendo a usar o Google Cloud. Com ela, quem tem pouco ou nenhum conhecimento sobre nuvem ganha experiência prática para aplicar no primeiro projeto do GCP. Esta Quest proporciona um contato inicial com os recursos fundamentais da plataforma, como o registro de comandos do Cloud Shell, a implementação da sua primeira máquina virtual, a execução de aplicativos no Kubernetes Engine e o balanceamento de carga. Assista também os vídeos rápidos que explicam os conceitos principais de cada laboratório.
Este curso é perfeito para desenvolvedores de nuvem iniciantes que estão procurando prática além do Google Cloud Essentials. Você vai ganhar experiência em laboratórios que se aprofundam no Cloud Storage e em outros serviços de aplicativos fundamentais, como Monitoring e Cloud Functions. Você vai desenvolver habilidades importantes que podem ser aplicadas a qualquer iniciativa do Google Cloud.
TensorFlow is an open source software library for high performance numerical computation that's great for writing models that can train and run on platforms ranging from your laptop to a fleet of servers in the Cloud to an edge device. This quest takes you beyond the basics of using predefined models and teaches you how to build, train and deploy your own on Google Cloud.
Esta é a segunda e última Quest de laboratórios práticos derivados dos exercícios do livro "Data Science on Google Cloud Platform" de Valliappa Lakshmanan, publicado pela O'Reilly Media, Inc. Nesta etapa, que aborda os assuntos do capítulo nove até o fim do livro, você ampliará as habilidades praticadas na primeira Quest. Você também executará jobs completos de machine learning com ferramentas de última geração e conjuntos de dados do mundo real. Tudo isso será feito com os serviços e ferramentas do Google Cloud Platform.
Machine Learning is one of the most innovative fields in technology, and the Google Cloud Platform has been instrumental in furthering its development. With a host of APIs, Google Cloud has a tool for just about any machine learning job. In this advanced-level course, you will get hands-on practice with machine learning at scale and how to employ the advanced ML infrastructure available on Google Cloud.
Esta é a primeira de duas Quests de laboratórios práticos e é derivada dos exercícios do livro Data Science on Google Cloud Platform de Valliappa Lakshmanan, publicado pela O'Reilly Media, Inc. Nesta primeira Quest, que aborda o capítulo 8, você poderá praticar todos os aspectos de ingestão, preparação, processamento, consulta, exploração e visualização de conjuntos de dados usando as ferramentas e os serviços do Google Cloud Platform.
Big Data, machine learning e inteligência artificial são áreas da computação que estão em alta. Mas esses são campos muito especializados, e é difícil encontrar materiais introdutórios sobre eles. Felizmente, o Google Cloud oferece serviços fáceis de usar nessas áreas, e com este curso de nível básico, você já pode começar sua jornada com ferramentas como o BigQuery, a API Cloud Speech e o Video Intelligence.
Data Catalog é um serviço de gerenciamento de metadados totalmente gerenciado e escalonável. Com ele, as organizações descobrem, compreendem e gerenciam rapidamente todos os dados. Nesta Quest, vamos começar com algo simples - você aprenderá como pesquisar e adicionar tags a recursos de dados e metadados usando o Data Catalog. Depois que você aprender a desenvolver seus próprios modelos de tags correlacionados a dados da tabela do BigQuery, mostraremos como criar conectores do MySQL, PostgreSQL e SQLServer para o Data Catalog.
Earn a skill badge by completing the Explore Machine Learning Models with Explainable AI quest, where you will learn how to do the following using Explainable AI: build and deploy a model to an AI platform for serving (prediction), use the What-If Tool with an image recognition model, identify bias in mortgage data using the What-If Tool, and compare models using the What-If Tool to identify potential bias. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete this skill badge quest and the final assessment challenge lab to receive a skill badge that you can share with your network.
Conquiste o selo de habilidade introdutório Preparar dados para APIs de ML no Google Cloud para demonstrar que você é capaz de: limpar dados com o Dataprep by Trifacta, executar pipelines de dados no Dataflow, criar clusters e executar jobs do Apache Spark no Dataproc e chamar APIs de ML, incluindo as APIs Cloud Natural Language, Google Cloud Speech-to-Text e Video Intelligence.
Conquiste um selo de habilidade ao concluir o curso Como desenvolver sua rede do Google Cloud, que ensina várias maneiras de implantar e monitorar aplicativos, incluindo como analisar os papéis do IAM e adicionar/remover acesso a projetos, criar redes VPC, implantar e monitorar VMs do Compute Engine; gravar consultas SQL, implantar e monitorar VMs no Compute Engine e implantar aplicativos usando Kubernetes com múltiplas abordagens de implantação.