加入 登录

Kamran Khalid

成为会员时间:2025

钻石联赛

16985 积分
从 BigQuery 数据中挖掘数据洞见 Earned Aug 15, 2025 EDT
Dataplex 使用入门 Earned Aug 11, 2025 EDT
Model Armor:保障 AI 部署安全 Earned Aug 10, 2025 EDT
AI 时代安全性简介 Earned Aug 10, 2025 EDT
面向开发者的 Responsible AI:隐私保护和安全 Earned Aug 10, 2025 EDT
面向开发者的 Responsible AI:可解释性和透明度 Earned Aug 10, 2025 EDT
面向开发者的 Responsible AI:公平性与偏见 Earned Aug 10, 2025 EDT
利用 Vertex AI 实现机器学习运维 (MLOps):模型评估 Earned Aug 4, 2025 EDT
适用于生成式 AI 的机器学习运维 (MLOps) Earned Aug 4, 2025 EDT
Machine Learning Operations (MLOps): Getting Started Earned Aug 4, 2025 EDT
Professional Machine Learning Engineer Study Guide Earned Aug 4, 2025 EDT
Responsible AI: 和 Google Cloud 一起践行 AI 原则 Earned Jul 18, 2025 EDT
负责任的 AI 简介 Earned Jul 18, 2025 EDT
大型语言模型简介 Earned Jul 18, 2025 EDT
生成式 AI 简介 Earned Jul 18, 2025 EDT
[Deprecated] Advanced Webhook Concepts Earned Jul 15, 2025 EDT
[DEPRECATED] Webhook fundamentals Earned Jul 15, 2025 EDT

完成入门级技能徽章课程“从 BigQuery 数据中挖掘数据洞见”,展示您在以下方面的技能: 编写 SQL 查询、查询公共表、将示例数据加载到 BigQuery 中、 在 BigQuery 中使用查询验证器排查常见的语法错误,以及通过连接到 BigQuery 数据在 Looker Studio 中 创建报告。

了解详情

完成入门级技能徽章课程 Dataplex 使用入门, 展现您在以下方面的技能:创建 Dataplex 资产,创建切面类型, 以及将切面应用于 Dataplex 中的条目。

了解详情

本课程回顾了 Model Armor 的基本安全功能,并让您能够使用该服务。您将了解与 LLM 相关的安全风险,以及 Model Armor 如何保护您的 AI 应用。

了解详情

人工智能 (AI) 具备巨大的变革潜力,但也带来了新的安全挑战。本课程专为负责安全性和数据保护的领导者而设计,助其运用相关策略在组织内安全管理 AI。学习一个有助于实现以下目标的框架:主动识别并减轻 AI 特有的风险,保护敏感数据,确保遵从法规,构建弹性 AI 基础设施。通过四个不同行业的精选用例,探索这些策略如何应用于现实场景。

了解详情

本课程介绍 AI 隐私保护和安全方面的重要主题,还将探索使用 Google Cloud 产品和开源工具实施建议的 AI 隐私保护和安全实践的实用方法和工具。

了解详情

本课程介绍了 AI 可解释性和透明度的相关概念,探讨了 AI 透明度对于开发者和工程师的重要性。同时探索了有助于在数据和 AI 模型中实现可解释性和透明度的实用方法及工具。

了解详情

本课程介绍了 Responsible AI 的概念和 AI 原则,还介绍了在 AI/机器学习实践中识别公平性与偏见以及减少偏见的实用技巧,同时探索了使用 Google Cloud 产品和开源工具来实施 Responsible AI 最佳实践的实用方法和工具。

了解详情

本课程能让机器学习从业者掌握评估生成式和预测式 AI 模型的基本工具、方法和最佳实践。要确保机器学习系统在实际运用中提供可靠、准确、高效的结果,做好模型评估至关重要。 学员将深入了解各项评估指标、方法及如何在不同模型类型和任务中适当应用这些指标和方法。课程将着重介绍生成式 AI 模型带来的独特挑战,并提供有效解决这些挑战的策略。通过利用 Google Cloud 的 Vertex AI Platform,学员可学习如何在模型选择、优化和持续监控工作中实施卓有成效的评估流程。

了解详情

本课程致力于为您提供所需的知识和工具,让您能够了解 MLOps 团队在部署和管理生成式 AI 模型以及探索 Vertex AI 如何帮助 AI 团队简化 MLOps 流程时面临的独特挑战,并帮助您在生成式 AI 项目中取得成功。

了解详情

This course introduces participants to MLOps tools and best practices for deploying, evaluating, monitoring and operating production ML systems on Google Cloud. MLOps is a discipline focused on the deployment, testing, monitoring, and automation of ML systems in production. Machine Learning Engineering professionals use tools for continuous improvement and evaluation of deployed models. They work with (or can be) Data Scientists, who develop models, to enable velocity and rigor in deploying the best performing models.

了解详情

This course helps learners create a study plan for the PMLE (Professional Machine Learning Engineer) certification exam. Learners explore the breadth and scope of the domains covered in the exam. Learners assess their exam readiness and create their individual study plan.

了解详情

随着企业对人工智能和机器学习的应用越来越广泛,以负责任的方式构建这些技术也变得更加重要。但对很多企业而言,真正践行 Responsible AI 并非易事。如果您有意了解如何在组织内践行 Responsible AI,本课程正适合您。 本课程将介绍 Google Cloud 目前如何践行 Responsible AI,以及从中总结的最佳实践和经验教训,便于您以此为框架构建自己的 Responsible AI 方法。

了解详情

这是一节入门级微课程,旨在解释什么是负责任的 AI、它的重要性,以及 Google 如何在自己的产品中实现负责任的 AI。此外,本课程还介绍了 Google 的 7 个 AI 开发原则。

了解详情

这是一节入门级微学习课程,探讨什么是大型语言模型 (LLM)、适合的应用场景以及如何使用提示调整来提升 LLM 性能,还介绍了可以帮助您开发自己的 Gen AI 应用的各种 Google 工具。

了解详情

这是一节入门级微课程,旨在解释什么是生成式 AI、它的用途以及与传统机器学习方法的区别。该课程还介绍了可以帮助您开发自己的生成式 AI 应用的各种 Google 工具。

了解详情

This course explores advanced technical considerations to optimize Webhook connectivity for comprehensive, end-to-end, Virtual Agent self-service experiences.

了解详情

In this course, you will learn the important role that different types of webhooks play in Dialogflow CX development, and how to effectively integrate them into your routine configuration of a Virtual Agent.

了解详情