Dołącz Zaloguj się

Kamran Khalid

Jest członkiem od 2025

Liga diamentowa

16985 pkt.
Uzyskiwanie statystyk z danych BigQuery Earned sie 15, 2025 EDT
Get Started with Dataplex Earned sie 11, 2025 EDT
Model Armor: Securing AI Deployments Earned sie 10, 2025 EDT
Introduction to Security in the World of AI Earned sie 10, 2025 EDT
Odpowiedzialna AI dla deweloperów: prywatność i bezpieczeństwo Earned sie 10, 2025 EDT
Odpowiedzialna AI dla deweloperów: interpretowalność i przejrzystość Earned sie 10, 2025 EDT
Odpowiedzialna AI dla deweloperów: obiektywność i uprzedzenia Earned sie 10, 2025 EDT
Machine Learning Operations (MLOps) with Vertex AI: Model Evaluation Earned sie 4, 2025 EDT
Machine Learning Operations (MLOps) for Generative AI Earned sie 4, 2025 EDT
Machine Learning Operations (MLOps): Getting Started Earned sie 4, 2025 EDT
Professional Machine Learning Engineer Study Guide Earned sie 4, 2025 EDT
Responsible AI: Applying AI Principles with Google Cloud - Polski Earned lip 18, 2025 EDT
Introduction to Responsible AI - Polski Earned lip 18, 2025 EDT
Introduction to Large Language Models - Polski Earned lip 18, 2025 EDT
Introduction to Generative AI - Polski Earned lip 18, 2025 EDT
[Deprecated] Advanced Webhook Concepts Earned lip 15, 2025 EDT
[DEPRECATED] Webhook fundamentals Earned lip 15, 2025 EDT

Ukończ szkolenie wprowadzające Uzyskiwanie statystyk z danych BigQuery, aby zdobyć odznakę potwierdzającą zdobycie następujących umiejętności: pisanie zapytań SQL, tworzenie zapytań dotyczących tabel publicznych, wczytywanie przykładowych danych w BigQuery, naprawianie typowych błędów składniowych przy użyciu walidatora zapytań w BigQuery oraz tworzenie raportów w Looker Studio przez tworzenie połączenia z danymi BigQuery.

Więcej informacji

Complete the introductory Get Started with Dataplex skill badge to demonstrate skills in the following: creating Dataplex assets, creating aspect types, and applying aspects to entries in Dataplex.

Więcej informacji

This course reviews the essential security features of Model Armor and equips you to work with the service. You’ll learn about the security risks associated with LLMs and how Model Armor protects your AI applications.

Więcej informacji

Artificial Intelligence (AI) offers transformative possibilities, but it also introduces new security challenges. This course equips security and data protection leaders with strategies to securely manage AI within their organizations. Learn a framework for proactively identifying and mitigating AI-specific risks, protecting sensitive data, ensuring compliance, and building a resilient AI infrastructure. Pick use cases from four different industries to explore how these strategies apply in real-world scenarios.

Więcej informacji

To szkolenie wprowadza w ważne kwestie dotyczące prywatności i bezpieczeństwa w dziedzinie AI. W jego trakcie przedstawiamy praktyczne techniki i narzędzia, które umożliwiają wdrożenie sprawdzonych metod w zakresie prywatności i bezpieczeństwa AI przy użyciu usług Google Cloud oraz narzędzi open source.

Więcej informacji

Na tym szkoleniu przedstawiamy koncepcje interpretowalności i przejrzystości AI. Omawiamy na nim, jak ważna jest przejrzystość AI dla deweloperów i inżynierów. Pokazujemy praktyczne techniki i narzędzia, które pomagają osiągnąć interpretowalność oraz przejrzystość zarówno w danych, jak i modelach AI.

Więcej informacji

Na tym szkoleniu przedstawiamy koncepcje odpowiedzialnej AI i zasad dotyczących AI. Omawiamy praktyczne metody identyfikowania obiektywności i uprzedzeń, a także ograniczania występowania uprzedzeń podczas używania AI/ML. W trakcie szkolenia przedstawiamy też praktyczne techniki i narzędzia, które umożliwiają wdrożenie sprawdzonych metod w zakresie odpowiedzialnej AI przy użyciu usług Google Cloud oraz narzędzi open source.

Więcej informacji

This course equips machine learning practitioners with the essential tools, techniques, and best practices for evaluating both generative and predictive AI models. Model evaluation is a critical discipline for ensuring that ML systems deliver reliable, accurate, and high-performing results in production. Participants will gain a deep understanding of various evaluation metrics, methodologies, and their appropriate application across different model types and tasks. The course will emphasize the unique challenges posed by generative AI models and provide strategies for tackling them effectively. By leveraging Google Cloud's Vertex AI platform, participants will learn how to implement robust evaluation processes for model selection, optimization, and continuous monitoring.

Więcej informacji

This course is dedicated to equipping you with the knowledge and tools needed to uncover the unique challenges faced by MLOps teams when deploying and managing Generative AI models, and exploring how Vertex AI empowers AI teams to streamline MLOps processes and achieve success in Generative AI projects.

Więcej informacji

This course introduces participants to MLOps tools and best practices for deploying, evaluating, monitoring and operating production ML systems on Google Cloud. MLOps is a discipline focused on the deployment, testing, monitoring, and automation of ML systems in production. Machine Learning Engineering professionals use tools for continuous improvement and evaluation of deployed models. They work with (or can be) Data Scientists, who develop models, to enable velocity and rigor in deploying the best performing models.

Więcej informacji

This course helps learners create a study plan for the PMLE (Professional Machine Learning Engineer) certification exam. Learners explore the breadth and scope of the domains covered in the exam. Learners assess their exam readiness and create their individual study plan.

Więcej informacji

Im szerzej wykorzystuje się w firmach sztuczną inteligencję i systemy uczące się, tym większej wagi nabiera odpowiedzialne podejście do opracowywania tych technologii. Wielu organizacjom trudniej jest jednak wprowadzić zasady odpowiedzialnej AI w praktyce niż tylko o tym rozmawiać. To szkolenie jest przeznaczone dla osób, które chcą się dowiedzieć, jak wdrożyć odpowiedzialną AI w swojej organizacji. W jego trakcie dowiesz się, jak robimy to w Google Cloud, oraz poznasz sprawdzone metody i wnioski z naszych działań w tym zakresie. Pomoże Ci to opracować własne podejście do odpowiedzialnej AI.

Więcej informacji

Celem tego szybkiego szkolenia dla początkujących jest wyjaśnienie, czym jest odpowiedzialna AI i dlaczego jest ważna, oraz przedstawienie, jak Google wprowadza ją w swoich usługach. Szkolenie zawiera także wprowadzenie do siedmiu zasad Google dotyczących sztucznej inteligencji.

Więcej informacji

To szybkie szkolenie dla początkujących wyjaśnia, czym są duże modele językowe (LLM) oraz jakie są ich zastosowania. Przedstawia również możliwości zwiększenia ich wydajności przez dostrajanie przy użyciu promptów oraz narzędzia Google, które pomogą Ci tworzyć własne aplikacje korzystające z generatywnej AI.

Więcej informacji

Celem tego szybkiego szkolenia dla początkujących jest wyjaśnienie, czym jest generatywna AI oraz jakie są jej zastosowania. Szkolenie przedstawia również różnice pomiędzy tą technologią a tradycyjnymi systemami uczącymi się, a także narzędzia Google, które pomogą Ci tworzyć własne aplikacje korzystające z generatywnej AI.

Więcej informacji

This course explores advanced technical considerations to optimize Webhook connectivity for comprehensive, end-to-end, Virtual Agent self-service experiences.

Więcej informacji

In this course, you will learn the important role that different types of webhooks play in Dialogflow CX development, and how to effectively integrate them into your routine configuration of a Virtual Agent.

Więcej informacji