Partecipa Accedi

Mark Shay

Membro dal giorno 2020

Campionato Argento

61929 punti
Select a Google Cloud Database for Your Applications Earned set 5, 2025 EDT
[CEPF L300 Course]: Databases Earned lug 29, 2025 EDT
Accelerate Knowledge Exchange with Gemini Enterprise Earned mar 4, 2025 EST
GCC Tech Learning Packs - Streaming Analytics - SME Academy Earned gen 15, 2025 EST
AI responsabile per sviluppatori: interpretabilità e trasparenza Earned ago 14, 2024 EDT
Machine Learning Operations (MLOps) for Generative AI Earned ago 13, 2024 EDT
AI responsabile per sviluppatori: equità e bias Earned ago 13, 2024 EDT
Inspect Rich Documents with Gemini Multimodality and Multimodal RAG Earned ago 13, 2024 EDT
Vector Search and Embeddings Earned lug 31, 2024 EDT
Feature engineering Earned apr 16, 2024 EDT
GCC Technical Specialty Learning Packs - Data Analytics - Prerequisites Earned apr 2, 2024 EDT
Responsible AI: Applying AI Principles with Google Cloud - Italiano Earned mar 5, 2024 EST
Generative AI Fundamentals - Italiano Earned mar 5, 2024 EST
Introduction to Responsible AI - Italiano Earned mar 5, 2024 EST
Creazione di pipeline di dati in batch su Google Cloud Earned feb 29, 2024 EST
Crea un mesh di dati con Dataplex Earned feb 28, 2024 EST
Prepara i dati per le API ML su Google Cloud Earned feb 27, 2024 EST
Build a Data Warehouse with BigQuery Earned feb 22, 2024 EST
Serverless Data Processing with Dataflow: Operations Earned feb 16, 2024 EST
Getting Started with MongoDB Atlas on Google Cloud Earned dic 12, 2023 EST
Enrich Metadata and Discovery of BigLake Data Earned dic 11, 2023 EST
Understanding Cloud Spanner Earned nov 27, 2023 EST
GCC Technical Specialty Learning Packs - Data Management - Specialty Earned nov 21, 2023 EST
GCC Technical Specialty Learning Packs - Data Management - Prerequisites Earned nov 21, 2023 EST
Rapid Migration & Modernization Program Earned nov 21, 2023 EST
Innovating with Data and Google Cloud Earned ott 24, 2023 EDT
Preparing for your Professional Data Engineer Journey Earned ott 19, 2023 EDT
Introduction to Generative AI Studio - Italiano Earned ago 23, 2023 EDT
Create Image Captioning Models - Italiano Earned ago 23, 2023 EDT
Encoder-Decoder Architecture - Italiano Earned ago 23, 2023 EDT
Introduction to Image Generation - Italiano Earned ago 23, 2023 EDT
Get Started with Dataplex Earned giu 13, 2023 EDT
Viaggio nell'AI generativa - Vertex AI Earned mag 17, 2023 EDT
Transformer Models and BERT Model - Italiano Earned mag 11, 2023 EDT
Attention Mechanism - Italiano Earned mag 11, 2023 EDT
Introduction to Large Language Models - Italiano Earned mag 11, 2023 EDT
Introduction to Generative AI - Italiano Earned mag 11, 2023 EDT
GCC Technical Specialty Learning Packs - Data Analytics - Prerequisites Earned gen 4, 2023 EST
GCC Technical Specialty Learning Packs - Data Management - Prerequisites Earned gen 4, 2023 EST
Create and Manage Cloud SQL for PostgreSQL Instances Earned gen 4, 2023 EST
Create and Manage AlloyDB Instances Earned ott 17, 2022 EDT
NetApp: Build, Protect and Govern your Data Infrastructure On Google Cloud Earned set 8, 2022 EDT
#GoogleClout Set 5 (4/10) Earned set 2, 2022 EDT
Creating Infrastructure on Google Cloud with Terraform Earned ago 18, 2022 EDT
Create and Manage Bigtable Instances Earned ago 18, 2022 EDT
#GoogleClout Set 2, 1/10 Earned ago 12, 2022 EDT
Create and Manage Cloud Spanner Instances Earned ago 12, 2022 EDT
DEPRECATED Explore Machine Learning Models with Explainable AI Earned ago 11, 2022 EDT
Optimize Your Google Cloud Costs Earned ago 9, 2022 EDT
Genera insight dai dati BigQuery Earned giu 29, 2022 EDT
Modernize Infrastructure and Applications with Google Cloud Earned giu 27, 2022 EDT
Share Data Using Google Data Cloud Earned giu 27, 2022 EDT
Using Vault on Google Cloud Earned giu 24, 2022 EDT
Exploring and Preparing your Data with BigQuery Earned giu 23, 2022 EDT
Achieving Advanced Insights with BigQuery Earned giu 23, 2022 EDT
Creating New BigQuery Datasets and Visualizing Insights Earned giu 23, 2022 EDT
Cloud Logging Earned giu 17, 2022 EDT
Use Machine Learning APIs on Google Cloud Earned giu 14, 2022 EDT
Exploring Data Transformation with Google Cloud Earned giu 12, 2022 EDT
Sviluppa la tua rete Google Cloud Earned giu 10, 2022 EDT
Advanced ML: ML Infrastructure Earned giu 9, 2022 EDT
Google Workspace Essentials Earned giu 9, 2022 EDT
Workspace: Add-ons Earned giu 8, 2022 EDT
Google Cloud Run Serverless Workshop Earned giu 8, 2022 EDT
Cloud Development Earned giu 8, 2022 EDT
Data Science on Google Cloud: Machine Learning Earned giu 7, 2022 EDT
DevOps Essentials Earned giu 7, 2022 EDT
Data Lake Modernization (Hadoop) on GCP Earned mag 27, 2022 EDT
Serverless Data Processing with Dataflow: Develop Pipelines Earned mag 27, 2022 EDT
Data Warehousing for Partners: Data Warehouse Migration with BigQuery Earned mag 20, 2022 EDT
Google Cloud Platform Fundamentals: Core Infrastructure Earned mag 19, 2022 EDT
Data Lake Modernization on Google Cloud Earned mag 18, 2022 EDT
Inside Track: SQL Server - Advanced Earned mag 17, 2022 EDT
Smart Analytics, Machine Learning, and AI on Google Cloud - Italiano Earned mag 17, 2022 EDT
Creazione di sistemi di analisi dei flussi di dati resilienti su Google Cloud Earned mag 17, 2022 EDT
Modernizzazione di data lake e data warehouse con Google Cloud Earned mag 17, 2022 EDT
DEPRECATED Exploring APIs Earned mag 13, 2022 EDT
Build LookML Objects in Looker Earned mag 11, 2022 EDT
Applying Advanced LookML Concepts in Looker Earned mag 10, 2022 EDT
Prepare Data for Looker Dashboards and Reports Earned mag 9, 2022 EDT
Create ML Models with BigQuery ML Earned apr 22, 2022 EDT
Security & Identity Fundamentals Earned apr 12, 2022 EDT
Creazione di una rete Google Cloud sicura Earned apr 11, 2022 EDT
Monitor Environments with Google Cloud Managed Service for Prometheus Earned apr 11, 2022 EDT
Enterprise Database Migration Earned apr 9, 2022 EDT
[DEPRECATED] Building Advanced Codeless Pipelines on Cloud Data Fusion Earned apr 6, 2022 EDT
Set Up a Google Cloud Network Earned apr 4, 2022 EDT
Google Developer Essentials Earned apr 4, 2022 EDT
DEPRECATED IoT in the Google Cloud Earned apr 3, 2022 EDT
DEPRECATED Applying BigQuery ML's Classification, Regression, and Demand Forecasting for Retail Applications Earned apr 2, 2022 EDT
Automate Data Capture at Scale with Document AI Earned apr 2, 2022 EDT
Anthos Service Mesh Earned apr 2, 2022 EDT
VM Migration Earned apr 1, 2022 EDT
DEPRECATED Network Performance and Optimization Earned mar 30, 2022 EDT
Baseline: Deploy & Develop Earned mar 30, 2022 EDT
Progettazione cloud Earned mar 29, 2022 EDT
[DEPRECATED] Deploying Applications Earned mar 29, 2022 EDT
Intermediate ML: TensorFlow on Google Cloud Earned mar 28, 2022 EDT
BigQuery for Machine Learning Earned mar 28, 2022 EDT
Managing Cloud Infrastructure with Terraform Earned mar 28, 2022 EDT
Conoscenze di base: infrastruttura Earned mar 26, 2022 EDT
Automate Deployment and Manage Traffic on a Google Cloud Network Earned mar 26, 2022 EDT
DEPRECATED Google Cloud's Operations Suite Earned mar 25, 2022 EDT
Kubernetes in Google Cloud Earned mar 25, 2022 EDT
DEPRECATED Cloud Architecture Earned mar 23, 2022 EDT
Building Codeless Pipelines on Cloud Data Fusion Earned feb 24, 2022 EST
Getting Started with Apache Kafka and Confluent Platform on Google Cloud Earned gen 29, 2022 EST
Deprecated Kubernetes Solutions Earned gen 19, 2022 EST
DEPRECATED Windows on Google Cloud Earned gen 17, 2022 EST
Baseline: dati, ML, AI Earned gen 17, 2022 EST
Understanding LookML in Looker Earned gen 16, 2022 EST
DEPRECATED Google Cloud Solutions II: Data and Machine Learning Earned gen 16, 2022 EST
Sports Analytics: Pitch Perfect BigQuery Earned gen 15, 2022 EST
Migrate MySQL Data to Cloud SQL Using Database Migration Service Earned gen 14, 2022 EST
Migrating MySQL data to Cloud SQL using Database Migration Service Earned gen 14, 2022 EST
Google Cloud Fundamentals: Core Infrastructure - Italiano Earned gen 13, 2022 EST
Scientific Data Processing Earned gen 13, 2022 EST
DEPRECATED Applied Data: Blockchain Earned gen 12, 2022 EST
Data Science on Google Cloud Earned gen 11, 2022 EST
DEPRECATED BigQuery for Marketing Analysts Earned gen 10, 2022 EST
Serverless Data Processing with Dataflow: Foundations Earned gen 10, 2022 EST
Google Cloud Big Data and Machine Learning Fundamentals - Italiano Earned gen 10, 2022 EST
Preparing for your Professional Data Engineer Journey Earned gen 8, 2022 EST
DEPRECATED Create Conversational AI Agents with Dialogflow CX Earned dic 11, 2021 EST
DEPRECATED Application Development - Python Earned lug 27, 2020 EDT
NCAA® March Madness®: Bracketology with Google Cloud Earned lug 24, 2020 EDT
DEPRECATED BigQuery for Data Analysis Earned lug 24, 2020 EDT
DEPRECATED BigQuery Basics for Data Analysts Earned lug 24, 2020 EDT
Data Catalog Fundamentals Earned lug 24, 2020 EDT
Engineer Data for Predictive Modeling with BigQuery ML Earned lug 24, 2020 EDT
[DEPRECATED] Data Engineering Earned lug 24, 2020 EDT
DEPRECATED BigQuery for Data Warehousing Earned lug 23, 2020 EDT
Cloud SQL Earned lug 22, 2020 EDT
Implementazione di Cloud Load Balancing per Compute Engine Earned lug 22, 2020 EDT
Google Cloud Essentials Earned lug 22, 2020 EDT

In this course, you learn to analyze and choose the right database for your needs, to effectively develop applications on Google Cloud. You explore relational and NoSQL databases, dive into Cloud SQL, AlloyDB, and Spanner, and learn how to align database strengths with your application requirements, including those of generative AI. Gain hands-on experience configuring Vector Search and migrating applications to the cloud.

Scopri di più

This Databases course consists of a series of advanced-level labs designed to validate your proficiency in migrating and managing Google Cloud databases. Each lab presents a set of the required tasks that you must complete with minimal assistance. The labs in this course have replaced the previous L300 Data Management Challenge Lab. If you have already completed the Challenge Lab as part of your L300 accreditation requirement, it will be carried over and count towards your L300 status. You must score 80% or higher for each lab to complete this course, and fulfill your CEPF L300 Database requirement. For technical issues with a Challenge Lab, please raise a Buganizer ticket using this CEPF Buganizer template: go/cepfl300labsupport

Scopri di più

Unite Google’s expertise in search and AI with Gemini Enterprise, a powerful tool designed to help employees find specific information from document storage, email, chats, ticketing systems, and other data sources, all from a single search bar. The Gemini Enterprise assistant can also help brainstorm, research, outline documents, and take actions like inviting coworkers to a calendar event to accelerate knowledge work and collaboration of all kinds. (Please note Gemini Enterprise was previously named Google Agentspace, there may be references to the previous product name in this course.)

Scopri di più

The learning path offers a deep dive into Google Cloud's data processing solutions, including: Dataflow Pub/Sub Managed Service for Apache Kafka BigQuery Engine for Apache Flink You'll learn how to leverage these tools to build, deploy, and troubleshoot efficient and scalable data pipelines for both batch and streaming data processing needs.

Scopri di più

Questo corso introduce i concetti di interpretabilità e la trasparenza dell'AI. Parla dell'importanza della trasparenza dell'AI per sviluppatori ed engineer. Illustra metodi e strumenti pratici per aiutare a raggiungere interpretabilità e trasparenza sia nei dati che nei modelli di AI.

Scopri di più

This course is dedicated to equipping you with the knowledge and tools needed to uncover the unique challenges faced by MLOps teams when deploying and managing Generative AI models, and exploring how Vertex AI empowers AI teams to streamline MLOps processes and achieve success in Generative AI projects.

Scopri di più

Questo corso introduce i concetti di AI responsabile e i principi dell'AI. Tratta le tecniche per identificare sostanzialmente l'equità e i bias e mitigare i bias nelle pratiche di AI/ML. Illustra metodi e strumenti pratici per implementare le best practice dell'AI responsabile utilizzando gli strumenti open source e i prodotti Google Cloud.

Scopri di più

Complete the intermediate Inspect Rich Documents with Gemini Multimodality and Multimodal RAG skill badge course to demonstrate skills in the following: using multimodal prompts to extract information from text and visual data, generating a video description, and retrieving extra information beyond the video using multimodality with Gemini; building metadata of documents containing text and images, getting all relevant text chunks, and printing citations by using Multimodal Retrieval Augmented Generation (RAG) with Gemini.

Scopri di più

Explore AI-powered search technologies, tools, and applications in this course. Learn semantic search utilizing vector embeddings, hybrid search combining semantic and keyword approaches, and retrieval-augmented generation (RAG) minimizing AI hallucinations as a grounded AI agent. Gain practical experience with Vertex AI Vector Search to build your intelligent search engine.

Scopri di più

Questo corso illustra i vantaggi dell'utilizzo di Vertex AI Feature Store, come migliorare l'accuratezza dei modelli di ML e come trovare le colonne di dati che forniscono le caratteristiche più utili. Il corso include inoltre contenuti e lab sul feature engineering utilizzando BigQuery ML, Keras e TensorFlow.

Scopri di più

This learner pack introduces the Google Cloud big data and machine learning products and services that support the data-to-AI lifecycle. It explores the processes, challenges, and benefits of building a big data pipeline and machine learning models with Vertex AI on Google Cloud. Goals Identify the purpose and value of Google Cloud Data Platform Learn about batch and streaming data pipelines Build data lake and data warehouse You can find all of our technical learning packs on go/techlearningpacks and industry learning packs on go/industrylearningpacks. Brought to you by the CLS Tech Specialization Team (gcc-enablement-tech@). Share your request/feedback on go/learningpacks-feedback!

Scopri di più

Dal momento che l'uso dell'intelligenza artificiale e del machine learning nelle aziende continua a crescere, cresce anche l'importanza di realizzarli in modo responsabile. Molti sono scoraggiati dal fatto che parlare di IA responsabile può essere più facile che metterla in pratica. Se vuoi imparare come operativizzare l'IA responsabile nella tua organizzazione, questo corso fa per te. In questo corso scoprirai come Google Cloud ci riesce attualmente, oltre alle best practice e alle lezioni apprese, per fungere da framework per costruire il tuo approccio all'IA responsabile.

Scopri di più

Guadagna un badge delle competenze completando i corsi Introduction to Generative AI, Introduction to Large Language Models e Introduction to Responsible AI. Superando il quiz finale, dimostrerai la tua comprensione dei concetti fondamentali relativi all'IA generativa. Un badge delle competenze è un badge digitale rilasciato da Google Cloud come riconoscimento della tua conoscenza dei prodotti e dei servizi Google Cloud. Condividi il tuo badge delle competenze rendendo pubblico il tuo profilo e aggiungendolo al tuo profilo sui social media.

Scopri di più

Questo è un corso di microlearning di livello introduttivo volto a spiegare cos'è l'IA responsabile, perché è importante e in che modo Google implementa l'IA responsabile nei propri prodotti. Introduce anche i 7 principi dell'IA di Google.

Scopri di più

Le pipeline di dati in genere rientrano in uno dei paradigmi EL (Extract, Load), ELT (Extract, Load, Transform) o ETL (Extract, Transform, Load). Questo corso descrive quale paradigma dovrebbe essere utilizzato e quando per i dati in batch. Inoltre, questo corso tratta diverse tecnologie su Google Cloud per la trasformazione dei dati, tra cui BigQuery, l'esecuzione di Spark su Dataproc, i grafici della pipeline in Cloud Data Fusion e trattamento dati serverless con Dataflow. Gli studenti fanno esperienza pratica nella creazione di componenti della pipeline di dati su Google Cloud utilizzando Qwiklabs.

Scopri di più

Completa il corso introduttivo con badge delle competenze Crea un mesh di dati con Dataplex per dimostrare le tue competenze nei seguenti ambiti: creare un mesh di dati con Dataplex per facilitare governance, discovery e sicurezza dei dati su Google Cloud. Ti eserciterai e metterai alla prova le tue competenze nel tagging degli asset, nell'assegnazione di ruoli IAM e nella valutazione della qualità dei dati in Dataplex.

Scopri di più

Ottieni il corso intermedio con badge delle competenze Prepara i dati per le API ML su Google Cloud per dimostrare le tue competenze nei seguenti ambiti: pulizia dei dati con Dataprep di Trifacta, esecuzione delle pipeline di dati in Dataflow, creazione dei cluster ed esecuzione dei job Apache Spark in Dataproc e richiamo delle API ML tra cui l'API Cloud Natural Language, l'API Google Cloud Speech-to-Text e l'API Video Intelligence.

Scopri di più

Complete the intermediate Build a Data Warehouse with BigQuery skill badge course to demonstrate skills in the following: joining data to create new tables, troubleshooting joins, appending data with unions, creating date-partitioned tables, and working with JSON, arrays, and structs in BigQuery.

Scopri di più

In the last installment of the Dataflow course series, we will introduce the components of the Dataflow operational model. We will examine tools and techniques for troubleshooting and optimizing pipeline performance. We will then review testing, deployment, and reliability best practices for Dataflow pipelines. We will conclude with a review of Templates, which makes it easy to scale Dataflow pipelines to organizations with hundreds of users. These lessons will help ensure that your data platform is stable and resilient to unanticipated circumstances.

Scopri di più

MongoDB Atlas provided customers a fully managed, database-as-a-service on Google’s data cloud that is unmatched in speed, scale, and security—all with AI built in. Modern database systems, including MongoDB, have been a big step forward—giving businesses a more flexible, scalable, and developer-friendly alternative to legacy relational databases. But there is an even bigger payoff with a solution such as MongoDB Atlas a fully managed, database-as-a-service (DBaaS) offering. It is an approach that gives businesses all of the advantages of a modern, scalable, highly available database, while freeing IT to focus on high-value activities.

Scopri di più

Complete the Enrich Metadata and Discovery of BigLake Data skill badge course to demonstrate skills in BigQuery, BigLake, and Dataplex Universal Catalog. You create BigLake tables and enrich metadata management and discovery of the table data.

Scopri di più

In this course you will learn about Cloud Spanner. You will get an introduction to Cloud Spanner, contrasting it with other Database products to understand when and how to use Spanner to solve your relational database needs at scale. You will learn how to create and manage Spanner databases using various tools on Google Cloud, learn to optimize relational schemas with Spanner’s distributed database model in mind, interact with your Spanner databases using the Spanner APIs, integrate Spanner with your applications, and learn how to use other Google tools for administering Spanner databases and managing your data.

Scopri di più

This learning pack is designed to have hands-on experience on Google Cloud data solutions. Goals Plan, execute, test, and monitor simple and complex enterprise database migrations to Google Cloud Choose an appropriate Google Cloud database, migrate SQL Server databases and run Oracle databases on Google Cloud bare metal Recognize and overcome the challenges of moving data to prevent data loss, preserve data integrity, and minimize downtime Evaluate on-premises database architectures and plan migrations to make the business case for moving databases to Google Cloud You can find all of our technical learning packs on go/techlearningpacks and industry learning packs on go/industrylearningpacks. Brought to you by the CLS Tech Specialization Team (gcc-enablement-tech@). Share your request/feedback on go/learningpacks-feedback!

Scopri di più

This learning pack is intended to give architects, engineers, and developers the skills required to help enterprise customers architect, plan, execute, and test database migration projects. This course covers how to move on-premises, enterprise databases like SQL Server to Google Cloud (Compute Engine and Cloud SQL) and Oracle to Google Cloud bare metal. Goals Plan, execute, test, and monitor simple and complex enterprise database migrations to Google Cloud Choose an appropriate Google Cloud database, migrate SQL Server databases and run Oracle databases on Google Cloud bare metal Recognize and overcome the challenges of moving data to prevent data loss, preserve data integrity, and minimize downtime Evaluate on-premises database architectures and plan migrations to make the business case for moving databases to Google Cloud You can find all of our technical learning packs on go/techlearningpacks and industry learning packs on go/industrylearningpacks. Brought to you by …

Scopri di più

The Google Cloud Rapid Migration & Modernization Program (RaMP) is a holistic, end-to-end migration/modernization program that helps customers & partners leverage expertise and best practices, lower risk, control costs, and simplify a customer's path to cloud success. This course will give an overview of the program and some of the tools and best practices available to support customer migrations & modernizations.

Scopri di più

Cloud technology on its own only provides a fraction of the true value to a business; When combined with data–lots and lots of it–it has the power to truly unlock value and create new experiences for customers. In this course, you'll learn what data is, historical ways companies have used it to make decisions, and why it is so critical for machine learning. This course also introduces learners to technical concepts such as structured and unstructured data. database, data warehouse, and data lakes. It then covers the most common and fastest growing Google Cloud products around data.

Scopri di più

This course helps learners create a study plan for the PDE (Professional Data Engineer) certification exam. Learners explore the breadth and scope of the domains covered in the exam. Learners assess their exam readiness and create their individual study plan.

Scopri di più

Questo corso illustra Generative AI Studio, un prodotto su Vertex AI che ti aiuta a prototipare e personalizzare i modelli di AI generativa in modo da poterne utilizzare le capacità nelle tue applicazioni. In questo corso imparerai cos'è Generative AI Studio, le sue funzionalità e opzioni e come utilizzarlo, esaminando le demo del prodotto. Alla fine, troverai un laboratorio pratico per mettere in pratica ciò che hai imparato e un quiz per testare le tue conoscenze.

Scopri di più

Questo corso ti insegna come creare un modello per le didascalie delle immagini utilizzando il deep learning. Scoprirai i diversi componenti di un modello per le didascalie delle immagini, come l'encoder e il decoder, e imparerai ad addestrare e valutare il tuo modello. Alla fine di questo corso, sarai in grado di creare modelli personali per le didascalie delle immagini e utilizzarli per generare didascalie per le immagini.

Scopri di più

Questo corso ti offre un riepilogo dell'architettura encoder-decoder, che è un'architettura di machine learning potente e diffusa per attività da sequenza a sequenza come traduzione automatica, riassunto del testo e risposta alle domande. Apprenderai i componenti principali dell'architettura encoder-decoder e come addestrare e fornire questi modelli. Nella procedura dettagliata del lab corrispondente, implementerai in TensorFlow dall'inizio un semplice codice dell'architettura encoder-decoder per la generazione di poesie da zero.

Scopri di più

Questo corso introduce i modelli di diffusione, una famiglia di modelli di machine learning che recentemente si sono dimostrati promettenti nello spazio di generazione delle immagini. I modelli di diffusione traggono ispirazione dalla fisica, in particolare dalla termodinamica. Negli ultimi anni, i modelli di diffusione sono diventati popolari sia nella ricerca che nella produzione. I modelli di diffusione sono alla base di molti modelli e strumenti di generazione di immagini all'avanguardia su Google Cloud. Questo corso ti introduce alla teoria alla base dei modelli di diffusione e a come addestrarli ed eseguirne il deployment su Vertex AI.

Scopri di più

Complete the introductory Get Started with Dataplex skill badge to demonstrate skills in the following: creating Dataplex assets, creating aspect types, and applying aspects to entries in Dataplex.

Scopri di più

Il corso Viaggio nell'AI generativa - Vertex AI è una raccolta di lab su come utilizzare l'AI generativa su Google Cloud. Nei lab imparerai a utilizzare i modelli nella famiglia di API Vertex AI PaLM, tra cui text-bison, chat-bison, e textembedding-gecko. Acquisirai inoltre competenze su progettazione di prompt, best practice e modalità di utilizzo per l'ideazione, oltre che per la classificazione, l'estrazione e il riassunto di testi e altro ancora. Imparerai anche come ottimizzare un foundation model utilizzando l'addestramento personalizzato di Vertex AI ed eseguendone il deployment in un endpoint Vertex AI.

Scopri di più

Questo corso ti introduce all'architettura Transformer e al modello BERT (Bidirectional Encoder Representations from Transformers). Scopri i componenti principali dell'architettura Transformer, come il meccanismo di auto-attenzione, e come viene utilizzata per creare il modello BERT. Imparerai anche le diverse attività per le quali può essere utilizzato il modello BERT, come la classificazione del testo, la risposta alle domande e l'inferenza del linguaggio naturale. Si stima che il completamento di questo corso richieda circa 45 minuti.

Scopri di più

Questo corso ti introdurrà al meccanismo di attenzione, una potente tecnica che consente alle reti neurali di concentrarsi su parti specifiche di una sequenza di input. Imparerai come funziona l'attenzione e come può essere utilizzata per migliorare le prestazioni di molte attività di machine learning, come la traduzione automatica, il compendio di testi e la risposta alle domande.

Scopri di più

Questo è un corso di microlearning di livello introduttivo che esplora cosa sono i modelli linguistici di grandi dimensioni (LLM), i casi d'uso in cui possono essere utilizzati e come è possibile utilizzare l'ottimizzazione dei prompt per migliorare le prestazioni dei modelli LLM. Descrive inoltre gli strumenti Google per aiutarti a sviluppare le tue app Gen AI.

Scopri di più

Questo è un corso di microlearning di livello introduttivo volto a spiegare cos'è l'AI generativa, come viene utilizzata e in che modo differisce dai tradizionali metodi di machine learning. Descrive inoltre gli strumenti Google che possono aiutarti a sviluppare le tue app Gen AI.

Scopri di più

This learner pack introduces the Google Cloud big data and machine learning products and services that support the data-to-AI lifecycle. It explores the processes, challenges, and benefits of building a big data pipeline and machine learning models with Vertex AI on Google Cloud. Goals Identify the purpose and value of Google Cloud Data Platform Learn about batch and streaming data pipelines Build data lake and data warehouse You can find all of our technical learning packs on go/techlearningpacks and industry learning packs on go/industrylearningpacks. Brought to you by the CLS Tech Specialization Team (gcc-enablement-tech@). Share your request/feedback on go/learningpacks-feedback!

Scopri di più

This learning pack is intended to give architects, engineers, and developers the skills required to help enterprise customers architect, plan, execute, and test database migration projects. This course covers how to move on-premises, enterprise databases like SQL Server to Google Cloud (Compute Engine and Cloud SQL) and Oracle to Google Cloud bare metal. Goals Plan, execute, test, and monitor simple and complex enterprise database migrations to Google Cloud Choose an appropriate Google Cloud database, migrate SQL Server databases and run Oracle databases on Google Cloud bare metal Recognize and overcome the challenges of moving data to prevent data loss, preserve data integrity, and minimize downtime Evaluate on-premises database architectures and plan migrations to make the business case for moving databases to Google Cloud You can find all of our technical learning packs on go/techlearningpacks and industry learning packs on go/industrylearningpacks. Brought to you by …

Scopri di più

Complete the introductory Create and Manage Cloud SQL for PostgreSQL Instances skill badge to demonstrate skills in the following: migrating, configuring, and managing Cloud SQL for PostgreSQL instances and databases.

Scopri di più

Complete the introductory Create and Manage AlloyDB Instances skill badge to demonstrate skills in the following: performing core AlloyDB operations and tasks, migrating to AlloyDB from PostgreSQL, administering an AlloyDB database, and accelerating analytical queries using the AlloyDB Columnar Engine.

Scopri di più

It’s no secret today that data is growing rapidly and considered the most critical asset of any organization. NetApp and Google Cloud play an instrumental role in enabling you to optimally store, protect and govern your data. With NetApp Cloud Manager and NetApp Cloud Volumes ONTAP data storage technology that utilizes Google Cloud compute, storage and networking infrastructure, you can easily manage storage operations and meet the requirements of any workload. In this course, you get hands-on practice on using NetApp Cloud Manager and Cloud Volumes ONTAP and learn about the capabilities delivered such as multi-protocol data access, built-in storage efficiencies and data protection features, remote caching and more.

Scopri di più

Flex your Google Clout! Each week unlocks a new cloud puzzle. How fast can you find the solution? Share your score on your choice of social networks and join the conversation over in the Google Cloud Community.

Scopri di più

In this quest you will get hands-on experience writing infrastructure as code with Terraform.

Scopri di più

Complete the introductory Create and Manage Bigtable Instances skill badge to demonstrate skills in the following: creating instances, designing schemas, querying data, and performing administrative tasks in Bigtable including monitoring performance and configuring node autoscaling and replication.

Scopri di più

Flex your Google Clout! Each day unlocks a new cloud puzzle. Complete all five and you’ll earn the inaugural Google Cloud badge! Share your score on your choice of social networks and join the conversation over in the Google Cloud Community.

Scopri di più

Complete the introductory Create and Manage Cloud Spanner Instances skill badge to demonstrate skills in the following: creating and interacting with Cloud Spanner instances and databases; loading Cloud Spanner databases using various techniques; backing up Cloud Spanner databases; defining schemas and understanding query plans; and deploying a Modern Web App connected to a Cloud Spanner instance.

Scopri di più

Earn a skill badge by completing the Explore Machine Learning Models with Explainable AI quest, where you will learn how to do the following using Explainable AI: build and deploy a model to an AI platform for serving (prediction), use the What-If Tool with an image recognition model, identify bias in mortgage data using the What-If Tool, and compare models using the What-If Tool to identify potential bias. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete this skill badge quest and the final assessment challenge lab to receive a skill badge that you can share with your network.

Scopri di più

This is the second Quest in a two-part series on Google Cloud billing and cost management essentials. This Quest is most suitable for those in a Finance and/or IT related role responsible for optimizing their organization’s cloud infrastructure. Here you'll learn several ways to control and optimize your Google Cloud costs, including setting up budgets and alerts, managing quota limits, and taking advantage of committed use discounts. In the hands-on labs, you’ll practice using various tools to control and optimize your Google Cloud costs or to influence your technology teams to apply the cost optimization best practices.

Scopri di più

Completa il corso introduttivo con badge delle competenze Genera insight dai dati BigQuery per dimostrare le tue competenze nei seguenti ambiti: scrivere query SQL, eseguire query su tabelle pubbliche, caricare dati di esempio in BigQuery, risolvere i problemi di sintassi comuni con lo strumento di convalida query in BigQuery e creare report in Looker Studio collegando ai dati di BigQuery.

Scopri di più

Many traditional enterprises use legacy systems and applications that can't stay up-to-date with modern customer expectations. Business leaders often have to choose between maintaining their aging IT systems or investing in new products and services. "Modernize Infrastructure and Applications with Google Cloud" explores these challenges and offers solutions to overcome them by using cloud technology. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.

Scopri di più

Earn a skill badge by completing the Share Data Using Google Data Cloud skill badge course, where you will gain practical experience with Google Cloud Data Sharing Partners, which have proprietary datasets that customers can use for their analytics use cases. Customers subscribe to this data, query it within their own platform, then augment it with their own datasets and use their visualization tools for their customer facing dashboards.

Scopri di più

This quest introduces you to Vault and teaches you how to secure, store, and tightly control access to tokens, passwords, certificates, and encryption keys to protect secrets and other sensitive data.

Scopri di più

In this course, we see what the common challenges faced by data analysts are and how to solve them with the big data tools on Google Cloud. You’ll pick up some SQL along the way and become very familiar with using BigQuery and Dataprep to analyze and transform your datasets. This is the first course of the From Data to Insights with Google Cloud series. After completing this course, enroll in the Creating New BigQuery Datasets and Visualizing Insights course.

Scopri di più

The third course in this course series is Achieving Advanced Insights with BigQuery. Here we will build on your growing knowledge of SQL as we dive into advanced functions and how to break apart a complex query into manageable steps. We will cover the internal architecture of BigQuery (column-based sharded storage) and advanced SQL topics like nested and repeated fields through the use of Arrays and Structs. Lastly we will dive into optimizing your queries for performance and how you can secure your data through authorized views. After completing this course, enroll in the Applying Machine Learning to your Data with Google Cloud course.

Scopri di più

This is the second course in the Data to Insights course series. Here we will cover how to ingest new external datasets into BigQuery and visualize them with Looker Studio. We will also cover intermediate SQL concepts like multi-table JOINs and UNIONs which will allow you to analyze data across multiple data sources. Note: Even if you have a background in SQL, there are BigQuery specifics (like handling query cache and table wildcards) that may be new to you. After completing this course, enroll in the Achieving Advanced Insights with BigQuery course.

Scopri di più

Cloud Logging is a fully managed service that performs at scale. It can ingest application and system log data from thousands of VMs and, even better, analyze all that log data in real time. In this fundamental-level Quest, you learn how to store, search, analyze, monitor, and alert on log data and events from Google Cloud. The labs in the Quest give you hands-on practice using Cloud Logging to maximize your learning experience and provide insight on how you can use Cloud Logging to your own Google Cloud environment.

Scopri di più

Earn the advanced skill badge by completing the Use Machine Learning APIs on Google Cloud course, where you learn the basic features for the following machine learning and AI technologies: Cloud Vision API, Cloud Translation API, and Cloud Natural Language API.

Scopri di più

Cloud technology can bring great value to an organization, and combining the power of cloud technology with data has the potential to unlock even more value and create new customer experiences. “Exploring Data Transformation with Google Cloud” explores the value data can bring to an organization and ways Google Cloud can make data useful and accessible. Part of the Cloud Digital Leader learning path, this course aims to help individuals grow in their role and build the future of their business.

Scopri di più

Guadagna un badge delle competenze completando il corso Sviluppa la tua rete Google Cloud, in cui apprenderai diversi modi per eseguire il deployment e il monitoraggio delle applicazioni, tra cui: esplorare i ruoli IAM e aggiungere/rimuovere l'accesso ai progetti, creare reti VPC, eseguire il deployment e il monitoraggio delle VM di Compute Engine, scrivere query SQL, eseguire il deployment e il monitoraggio delle VM in Compute Engine ed eseguire il deployment delle applicazioni utilizzando Kubernetes con più approcci al deployment.

Scopri di più

Machine Learning is one of the most innovative fields in technology, and the Google Cloud Platform has been instrumental in furthering its development. With a host of APIs, Google Cloud has a tool for just about any machine learning job. In this advanced-level course, you will get hands-on practice with machine learning at scale and how to employ the advanced ML infrastructure available on Google Cloud.

Scopri di più

Workspace is Google's collaborative applications platform, delivered from Google Cloud. In this introductory-level course you will get hands-on practice with Workspace’s core applications from a user perspective. Although there are many more applications and tool components to Workspace than are covered here, you will get experience with the primary apps: Gmail, Calendar, Sheets and a handful of others. Each lab can be completed in 10-15 minutes, but extra time is provided to allow self-directed free exploration of the applications.

Scopri di più

This course demonstrates the power of integrating Google Cloud services and tools with Workspace applications - like using Node.js to build a survey bot, the Natural Language API to recognize sentiment in a Google Doc, and building a chat bot with Apps Script.

Scopri di più

Twelve years ago Lily started the Pet Theory chain of veterinary clinics, and has been expanding rapidly. Now, Pet Theory is experiencing some growing pains: their appointment scheduling system is not able to handle the increased load, customers aren't receiving lab results reliably through email and text, and veteranerians are spending more time with insurance companies than with their patients. Lily wants to build a cloud-based system that scales better than the legacy solution and doesn't require lots of ongoing maintenance. The team has decided to go with serverless technology. For the labs in the Google Cloud Run Serverless Quest, you will read through a fictitious business scenario in each lab and assist the characters in implementing a serverless solution. Looking for a hands on challenge lab to demonstrate your skills and validate your knowledge? On completing this quest, enroll in and finish the additional challenge lab at the end of this quest to receive an exclusive Google…

Scopri di più

The hands-on labs in this Quest are structured to give experienced app developers hands-on practice with the state-of-the-art developing applications in Google Cloud. The topics align with the Google Cloud Certified Professional Cloud Developer Certification. These labs follow the sequence of activities needed to create and deploy an app in Google Cloud from beginning to end. Be aware that while practice with these labs will increase your skills and abilities, it is recommended that you also review the exam guide and other available preparation resources.

Scopri di più

This is the second of two Quests of hands-on labs derived from the exercises from the book Data Science on Google Cloud Platform, 2nd Edition by Valliappa Lakshmanan, published by O'Reilly Media, Inc. In this second Quest, covering chapter 9 through the end of the book, you extend the skills practiced in the first Quest, and run full-fledged machine learning jobs with state-of-the-art tools and real-world data sets, all using Google Cloud tools and services.

Scopri di più

Obtain a competitive advantage through DevOps. DevOps is an organizational and cultural movement that aims to increase software delivery velocity, improve service reliability, and build shared ownership among software stakeholders. In this course you will learn how to use Google Cloud to improve the speed, stability, availability, and security of your software delivery capability. DevOps Research and Assessment has joined Google Cloud. How does your team measure up? Take this five question multiple-choice quiz and find out!

Scopri di più

The Data Lake Modernization course aims to prepare you to lead a Data Lake Modernization engagement through discovery & qualification through the technical considerations & cost modelling. The training is designed to educate on the Migration Journey, Data Lifecycle, Costing & Hands on Technical execution. At the end of the training you will have a deeper understanding of the Data Lake ecosystem, modernizing and migrating to GCP and hands-on experience of building data ingestion, processing & analytics pipelines on GCP.

Scopri di più

In this second installment of the Dataflow course series, we are going to be diving deeper on developing pipelines using the Beam SDK. We start with a review of Apache Beam concepts. Next, we discuss processing streaming data using windows, watermarks and triggers. We then cover options for sources and sinks in your pipelines, schemas to express your structured data, and how to do stateful transformations using State and Timer APIs. We move onto reviewing best practices that help maximize your pipeline performance. Towards the end of the course, we introduce SQL and Dataframes to represent your business logic in Beam and how to iteratively develop pipelines using Beam notebooks.

Scopri di più

In this course, you will receive technical training for Enterprise Data Warehouses solutions using BigQuery based on the best practices developed internally by Google’s technical sales and services organizations. The course will also provide guidance and training on key technical challenges that can arise when migrating existing Enterprise Data Warehouses and ETL pipelines to Google Cloud. You will get hands-on experience with real migration tasks, such as data migration, schema optimization, and SQL Query conversion and optimization. The course will also cover key aspects of ETL pipeline migration to Dataproc as well as using Pub/Sub, Dataflow, and Cloud Data Fusion, giving you hands-on experience using all of these tools for Data Warehouse ETL pipelines.

Scopri di più

This content is deprecated. Please see the latest version of the course, here.

Scopri di più

This course focuses on how you can bring your on-premises data lakes and workloads to Google Cloud to unlock cost savings and scale.

Scopri di più

This course further explores SQL Server on Google Cloud.

Scopri di più

L'integrazione del machine learning nelle pipeline di dati aumenta la capacità di estrarre insight dai dati. Questo corso illustra i modi in cui il machine learning può essere incluso nelle pipeline di dati su Google Cloud. Per una personalizzazione minima o nulla, il corso tratta di AutoML. Per funzionalità di machine learning più personalizzate, il corso introduce Notebooks e BigQuery Machine Learning (BigQuery ML). Inoltre, il corso spiega come mettere in produzione soluzioni di machine learning utilizzando Vertex AI.

Scopri di più

L'elaborazione dei flussi di dati sta diventando sempre più diffusa poiché la modalità flusso consente alle aziende di ottenere parametri in tempo reale sulle operazioni aziendali. Questo corso tratta la creazione di pipeline di dati in modalità flusso su Google Cloud. Pub/Sub viene presentato come strumento per la gestione dei flussi di dati in entrata. Il corso spiega anche come applicare aggregazioni e trasformazioni ai flussi di dati utilizzando Dataflow e come archiviare i record elaborati in BigQuery o Bigtable per l'analisi. Gli studenti acquisiranno esperienza pratica nella creazione di componenti della pipeline di dati in modalità flusso su Google Cloud utilizzando QwikLabs.

Scopri di più

I due componenti chiave di qualsiasi pipeline di dati sono costituiti dai data lake e dai data warehouse. In questo corso evidenzieremo i casi d'uso per ogni tipo di spazio di archiviazione e approfondiremo i dettagli tecnici delle soluzioni di data lake e data warehouse disponibili su Google Cloud. Inoltre, descriveremo il ruolo di un data engineer, illustreremo i vantaggi di una pipeline di dati di successo per le operazioni aziendali ed esamineremo i motivi per cui il data engineering dovrebbe essere eseguito in un ambiente cloud. Questo è il primo corso della serie Data engineering su Google Cloud. Dopo il completamento di questo corso, iscriviti al corso Creazione di pipeline di dati in batch su Google Cloud.

Scopri di più

Google Cloud Application Programming Interfaces are the mechanism to interact with Google Cloud Services programmatically. This quest will give you hands-on practice with a variety of GCP APIs, which you will learn through working with Google’s APIs Explorer, a tool that allows you to browse APIs and run their methods interactively. By learning how to transfer data between Cloud Storage buckets, deploy Compute Engine instances, configure Dataproc clusters and much more, Exploring APIs will show you how powerful APIs are and why they are used almost exclusively by proficient GCP users. Enroll in this quest today.

Scopri di più

Complete the introductory Build LookML Objects in Looker skill badge course to demonstrate skills in the following: building new dimensions and measures, views, and derived tables; setting measure filters and types based on requirements; updating dimensions and measures; building and refining Explores; joining views to existing Explores; and deciding which LookML objects to create based on business requirements.

Scopri di più

In this course, you will get hands-on experience applying advanced LookML concepts in Looker. You will learn how to use Liquid to customize and create dynamic dimensions and measures, create dynamic SQL derived tables and customized native derived tables, and use extends to modularize your LookML code.

Scopri di più

Complete the introductory Prepare Data for Looker Dashboards and Reports skill badge course to demonstrate skills in the following: filtering, sorting, and pivoting data; merging results from different Looker Explores; and using functions and operators to build Looker dashboards and reports for data analysis and visualization.

Scopri di più

Complete the intermediate Create ML Models with BigQuery ML skill badge to demonstrate skills in creating and evaluating machine learning models with BigQuery ML to make data predictions.

Scopri di più

Security is an uncompromising feature of Google Cloud services, and Google Cloud has developed specific tools for ensuring safety and identity across your projects. In this fundamental-level quest, you will get hands-on practice with Google Cloud’s Identity and Access Management (IAM) service, which is the go-to for managing user and virtual machine accounts. You will get experience with network security by provisioning VPCs and VPNs, and learn what tools are available for security threat and data loss protections.

Scopri di più

Guadagna un badge delle competenze completando il corso Creazione di una rete Google Cloud sicura, in cui scoprirai più risorse di networking per creare, scalare e proteggere le tue applicazioni su Google Cloud.

Scopri di più

Earn a skill badge by completing the Monitor Environments with Google Cloud Managed Service for Prometheus skill badge course, where you learn Kubernetes Monitoring with Google Cloud Managed Service for Prometheus.

Scopri di più

This course is intended to give architects, engineers, and developers the skills required to help enterprise customers architect, plan, execute, and test database migration projects. Through a combination of presentations, demos, and hands-on labs participants move databases to Google Cloud while taking advantage of various services. This course covers how to move on-premises, enterprise databases like SQL Server to Google Cloud (Compute Engine and Cloud SQL) and Oracle to Google Cloud bare metal.

Scopri di più

This advanced-level Quest builds on its predecessor Quest, and offers hands-on practice on the more advanced data integration features available in Cloud Data Fusion, while sharing best practices to build more robust, reusable, dynamic pipelines. Learners get to try out the data lineage feature as well to derive interesting insights into their data’s history.

Scopri di più

Earn a skill badge by completing the Set Up a Google Cloud Network skill badge course, where you will learn how to perform basic networking tasks on Google Cloud Platform - create a custom network, add subnets firewall rules, then create VMs and test the latency when they communicate with each other.

Scopri di più

This introductory-level quest shows application developers how the Google Cloud ecosystem could help them build secure, scalable, and intelligent cloud native applications. You learn how to develop and scale applications without setting up infrastructure, run data analytics, gain insights from data, and develop with pre-trained ML APIs to leverage machine learning even if you are not a Machine Learning expert. You will also experience seamless integration between various Google services and APIs to create intelligent apps.

Scopri di più

In this quest, you will learn about Google Cloud’s IoT Core service and its integration with other services like GCS, Dataprep, Stackdriver and Firestore. The labs in this quest use simulator code to mimic IOT devices and the learning here should empower you to implement the same streaming pipeline with real world IoT devices.

Scopri di più

In this course you will learn how to use several BigQuery ML features to improve retail use cases. Predict the demand for bike rentals in NYC with demand forecasting, and see how to use BigQuery ML for a classification task that predicts the likelihood of a website visitor making a purchase.

Scopri di più

Earn the introductory skill badge by completing the Automate Data Capture at Scale with Document AI course. In this course, you learn how to extract, process, and capture data using Document AI.

Scopri di più

This intermediate-level quest is unique among Qwiklabs quests. These labs have been curated to give operators hands-on practice with Anthos—a new, open application modernization platform on Google Cloud. Anthos enables you to build and manage modern hybrid applications. Tasks include: installing service mesh, collecting telemetry, and securing your microservices with service mesh policies. This quest is composed of labs targeted to teach you everything you need to know to introduce service mesh, and Anthos, into your next hybrid cloud project.

Scopri di più

Google Cloud’s four step structured Cloud Migration Path Methodology provides a defined and repeatable path for users to follow when migrating and modernizing Virtual Machines. In this quest, you will get hands-on practice with Google’s current solution set for VM assessment, planning, migration, and modernization. You will start by analyzing your lab environment and building assessment reports with CloudPhysics and StratoZone, then build a landing zone within Google Cloud leveraging Terraform’s infrastructure-as-code templates, next you will manually transform a two-tier application into a cloud-native workload running on Kubernetes, and finally, transform a VM workload into Kubernetes with Migrate for Anthos and migrate a VM between cloud environments.

Scopri di più

If you want to take your Google Cloud networking skills to the next level, look no further. This course is composed of labs that cover real-life use cases and it will teach you best practices for overcoming common networking bottlenecks. From getting hands-on practice with testing and improving network performance, to integrating high-throughput VPNs and networking tiers, Network Performance and Optimization is an essential course for Google Cloud developers who are looking to double down on application speed and robustness.

Scopri di più

In this introductory-level quest, you will learn the fundamentals of developing and deploying applications on the Google Cloud Platform. You will get hands-on experience with the Google App Engine framework by launching applications written in languages like Python, Ruby, and Java (just to name a few). You will see first-hand how straightforward and powerful GCP application frameworks are, and how easily they integrate with GCP database, data-loss prevention, and security services.

Scopri di più

Questo corso introduttivo è unico tra le altre offerte di corsi. I lab sono stati selezionati per offrire ai professionisti IT la possibilità di fare pratica su argomenti e servizi che compaiono nell'esame di certificazione Google Cloud - Associate Cloud Engineer. Da IAM al networking, al deployment di Kubernetes Engine, questo corso si compone di lab specifici che metteranno alla prova le tue conoscenze su Google Cloud. Tieni presente che, sebbene la pratica con questi lab ti aiuterà a migliorare le tue competenze e capacità, ti consigliamo di rivedere anche la guida all'esame e altre risorse di preparazione disponibili.

Scopri di più

The Google Cloud Platform provides many different frameworks and options to fit your application’s needs. In this introductory-level quest, you will get plenty of hands-on practice deploying sample applications on Google App Engine. You will also dive into other web application frameworks like Firebase, Wordpress, and Node.js and see firsthand how they can be integrated with Google Cloud.

Scopri di più

TensorFlow is an open source software library for high performance numerical computation that's great for writing models that can train and run on platforms ranging from your laptop to a fleet of servers in the Cloud to an edge device. This quest takes you beyond the basics of using predefined models and teaches you how to build, train and deploy your own on Google Cloud.

Scopri di più

Want to build ML models in minutes instead of hours using just SQL? BigQuery ML democratizes machine learning by letting data analysts create, train, evaluate, and predict with machine learning models using existing SQL tools and skills. In this series of labs, you will experiment with different model types and learn what makes a good model.

Scopri di più

In this Quest, the experienced user of Google Cloud will learn how to describe and launch cloud resources with Terraform, an open source tool that codifies APIs into declarative configuration files that can be shared amongst team members, treated as code, edited, reviewed, and versioned. In these nine hands-on labs, you will work with example templates and understand how to launch a range of configurations, from simple servers, through full load-balanced applications.

Scopri di più

Se sei uno sviluppatore cloud principiante che vuole fare ancora pratica Google Cloud Essentials, questo corso fa al caso tuo. Acquisirai esperienza pratica attraverso lab specifici su Cloud Storage e altri servizi per applicazioni chiave come Monitoring e Cloud Functions. Svilupperai competenze preziose applicabili a qualsiasi iniziativa Google Cloud.

Scopri di più

Networking is a principle theme of cloud computing. It’s the underlying structure of Google Cloud, and it’s what connects all your resources and services to one another. This course will cover essential Google Cloud networking services and will give you hands-on practice with specialized tools for developing mature networks. From learning the ins-and-outs of VPCs, to creating enterprise-grade load balancers, Automate Deployment and Manage Traffic on a Google Cloud Network will give you the practical experience needed so you can start building robust networks right away.

Scopri di più

Learn the ins and outs of Google Cloud's operations suite, an important service for generating insights into the health of your applications. It provides a wealth of information in application monitoring, report logging, and diagnoses. These labs will give you hands-on practice with and will teach you how to monitor virtual machines, generate logs and alerts, and create custom metrics for application data. It is recommended that the students have at least earned a Badge by completing the Google Cloud Essentials. Looking for a hands on challenge lab to demonstrate your skills and validate your knowledge? On completing this course, enroll in and finish the challenge lab at the end of the Monitor and Log with Google Cloud Operations Suite to receive an exclusive Google Cloud digital badge.

Scopri di più

Kubernetes è il sistema di orchestrazione dei container più diffuso e Google Kubernetes Engine è stato progettato specificamente per supportare i deployment Kubernetes gestiti in Google Cloud. In questo corso di livello avanzato, potrai esercitarti nella configurazione di immagini e container Docker e nel deployment di applicazioni Kubernetes Engine complete. Grazie a questo corso, apprenderai le competenze pratiche necessarie per integrare l'orchestrazione dei container nel tuo workflow. Stai cercando un Challenge Lab pratico per dimostrare le tue abilità e convalidare le tue conoscenze? Dopo aver completato questo corso, termina il Challenge Lab aggiuntivo alla fine del corso Esegui il deployment di applicazioni Kubernetes su Google Cloud per ricevere un esclusivo badge digitale Google Cloud.

Scopri di più

This fundamental-level quest is unique amongst the other quest offerings. The labs have been curated to give IT professionals hands-on practice with topics and services that appear in the Google Cloud Certified Professional Cloud Architect Certification. From IAM, to networking, to Kubernetes engine deployment, this quest is composed of specific labs that will put your Google Cloud knowledge to the test. Be aware that while practice with these labs will increase your skills and abilities, we recommend that you also review the exam guide and other available preparation resources.

Scopri di più

This quest offers hands-on practice with Cloud Data Fusion, a cloud-native, code-free, data integration platform. ETL Developers, Data Engineers and Analysts can greatly benefit from the pre-built transformations and connectors to build and deploy their pipelines without worrying about writing code. This Quest starts with a quickstart lab that familiarises learners with the Cloud Data Fusion UI. Learners then get to try running batch and realtime pipelines as well as using the built-in Wrangler plugin to perform some interesting transformations on data.

Scopri di più

Organizations around the world rely on Apache Kafka to integrate existing systems in real time and build a new class of event streaming applications that unlock new business opportunities. Google and Confluent are in a partnership to deliver the best event streaming service based on Apache Kafka and to build event driven applications and big data pipelines on Google Cloud Platform. In this course, you will first learn how to deploy and create a streaming data pipeline with Apache Kafka, then try out the different functionalities of the Confluent Platform.

Scopri di più

Containerized applications have changed the game and are here to stay. With Kubernetes, you can orchestrate containers with ease, and integration with the Google Cloud Platform is seamless. In this advanced-level quest, you will be exposed to a wide range of Kubernetes use cases and will get hands-on practice architecting solutions over the course of 8 labs. From building Slackbots with NodeJS, to deploying game servers on clusters, to running the Cloud Vision API, Kubernetes Solutions will show you first-hand how agile and powerful this container orchestration system is.

Scopri di più

Google Cloud is committed to supporting Windows workloads in its frameworks and services. In this advanced-level quest, you will get hands-on practice running many of the popular Windows services on Google Cloud. For example, you will learn how to instantiate Microsoft SQL databases, cloud tools for Powershell on Google Cloud Platform frameworks.

Scopri di più

Big data, machine learning e intelligenza artificiale sono i principali argomenti di computing trattati attualmente, ma questi campi sono piuttosto specializzati ed è complicato reperire materiale introduttivo. Fortunatamente, Google Cloud offre servizi facili da usare in queste aree e con questo corso di livello introduttivo, in modo da poter fare i primi passi con strumenti come BigQuery, API Cloud Speech e Video Intelligence.

Scopri di più

In this quest, you will get hands-on experience with LookML in Looker. You will learn how to write LookML code to create new dimensions and measures, create derived tables and join them to Explores, filter Explores, and define caching policies in LookML.

Scopri di più

In this advanced-level quest, you will learn how to harness serious Google Cloud computing power to run big data and machine learning jobs. The hands-on labs will give you use cases, and you will be tasked with implementing big data and machine learning practices utilized by Google’s very own Solutions Architecture team. From running Big Query analytics on tens of thousands of basketball games, to training TensorFlow image classifiers, you will quickly see why Google Cloud is the go-to platform for running big data and machine learning jobs.

Scopri di più

In this introductory level Quest you will gain practical experience on the fundamentals of sports data science using BigQuery. Start your journey by creating a soccer dataset in BigQuery by importing CSV and JSON files. Harness the power of BigQuery with sophisticated SQL analytical concepts, including using BigQuery ML to train an expected goals model on the soccer event data and evaluate the impressiveness of World Cup goals.

Scopri di più

Complete the introductory Migrate MySQL Data to Cloud SQL Using Database Migration Service skill badge course to demonstrate skills in the following: migrating MySQL data to Cloud SQL using different job types and connectivity options available in Database Migration Service and migrating MySQL user data when running Database Migration Service jobs.

Scopri di più

This course offers hands-on practice with migrating MySQL data to Cloud SQL using Database Migration Service. You start with an introductory lab that briefly reviews how to get started with Cloud SQL for MySQL, including how to connect to Cloud SQL instances using the Cloud Console. Then, you continue with two labs focused on migrating MySQL databases to Cloud SQL using different job types and connectivity options available in Database Migration Service. The course ends with a lab on migrating MySQL user data when running Database Migration Service jobs.

Scopri di più

Google Cloud Fundamentals: Core Infrastructure introduce concetti e terminologia importanti per lavorare con Google Cloud. Attraverso video e lab pratici, questo corso presenta e confronta molti dei servizi di computing e archiviazione di Google Cloud, insieme a importanti strumenti di gestione delle risorse e dei criteri.

Scopri di più

Big data, machine learning, and scientific data? It sounds like the perfect match. In this advanced-level quest, you will get hands-on practice with GCP services like Big Query, Dataproc, and Tensorflow by applying them to use cases that employ real-life, scientific data sets. By getting experience with tasks like earthquake data analysis and satellite image aggregation, Scientific Data Processing will expand your skill set in big data and machine learning so you can start tackling your own problems across a spectrum of scientific disciplines.

Scopri di più

Blockchain and related technologies, such as distributed ledger and distributed apps, are becoming new value drivers and solution priorities in many industries. In this course you will gain hands-on experience with distributed ledger and the exploration of blockchain datasets in Google Cloud. It brings the research and solution work of Google's Allen Day into self-paced labs for you to run and learn directly. Since this course uses advanced SQL in BigQuery, a SQL-in-BigQuery refresher lab is at the start.

Scopri di più

This is the first of two Quests of hands-on labs is derived from the exercises from the book Data Science on Google Cloud Platform, 2nd Edition by Valliappa Lakshmanan, published by O'Reilly Media, Inc. In this first Quest, covering up through chapter 8, you are given the opportunity to practice all aspects of ingestion, preparation, processing, querying, exploring and visualizing data sets using Google Cloud tools and services.

Scopri di più

Want to turn your marketing data into insights and build dashboards? Bring all of your data into one place for large-scale analysis and model building. Get repeatable, scalable, and valuable insights into your data by learning how to query it and using BigQuery. BigQuery is Google's fully managed, NoOps, low cost analytics database. With BigQuery you can query terabytes and terabytes of data without having any infrastructure to manage or needing a database administrator. BigQuery uses SQL and can take advantage of the pay-as-you-go model. BigQuery allows you to focus on analyzing data to find meaningful insights.

Scopri di più

This course is part 1 of a 3-course series on Serverless Data Processing with Dataflow. In this first course, we start with a refresher of what Apache Beam is and its relationship with Dataflow. Next, we talk about the Apache Beam vision and the benefits of the Beam Portability framework. The Beam Portability framework achieves the vision that a developer can use their favorite programming language with their preferred execution backend. We then show you how Dataflow allows you to separate compute and storage while saving money, and how identity, access, and management tools interact with your Dataflow pipelines. Lastly, we look at how to implement the right security model for your use case on Dataflow.

Scopri di più

Questo corso presenta i prodotti e i servizi per big data e di machine learning di Google Cloud che supportano il ciclo di vita dai dati all'IA. Esplora i processi, le sfide e i vantaggi della creazione di una pipeline di big data e di modelli di machine learning con Vertex AI su Google Cloud.

Scopri di più

This course helps learners create a study plan for the PDE (Professional Data Engineer) certification exam. Learners explore the breadth and scope of the domains covered in the exam. Learners assess their exam readiness and create their individual study plan.

Scopri di più

Earn a skill badge by completing the Create Conversational AI Agents with Dialogflow CX quest, where you will learn how to create a conversational virtual agent, including how to: define intents and entities, use versions and environments, create conversational branching, and use IVR features. A skill badge is an exclusive digital badge issued by Google Cloud in recognition of your proficiency with Google Cloud products and services and tests your ability to apply your knowledge in an interactive hands-on environment. Complete this skill badge quest, and the final assessment challenge lab, to receive a skill badge that you can share with your network.

Scopri di più

In this advanced-level quest, you will learn the ins and outs of developing GCP applications in Python. The first labs will walk you through the basics of environment setup and application data storage with Cloud Datastore. Once you have a handle on the fundamentals, you will get hands-on practice deploying Python applications on Kubernetes and App Engine (the latter is the same framework that powers Snapchat!) With specialized bonus labs that teach user authentication and backend service development, this quest will give you practical experience so you can start developing robust Python applications straight away.

Scopri di più

In this series of labs you will learn how to use BigQuery to analyze NCAA basketball data with SQL. Build a Machine Learning Model to predict the outcomes of NCAA March Madness basketball tournament games.

Scopri di più

Want to learn the core SQL and visualization skills of a Data Analyst? Interested in how to write queries that scale to petabyte-size datasets? Take the BigQuery for Analyst Quest and learn how to query, ingest, optimize, visualize, and even build machine learning models in SQL inside of BigQuery.

Scopri di più

Want to scale your data analysis efforts without managing database hardware? Learn the best practices for querying and getting insights from your data warehouse with this interactive series of BigQuery labs. BigQuery is Google's fully managed, NoOps, low cost analytics database. With BigQuery you can query terabytes and terabytes of data without having any infrastructure to manage or needing a database administrator. BigQuery uses SQL and can take advantage of the pay-as-you-go model. BigQuery allows you to focus on analyzing data to find meaningful insights.

Scopri di più

Data Catalog is deprecated and will be discontinued on January 30, 2026. You can still complete this course if you want to. For steps to transition your Data Catalog users, workloads, and content to Dataplex Catalog, see Transition from Data Catalog to Dataplex Catalog (https://cloud.google.com/dataplex/docs/transition-to-dataplex-catalog). Data Catalog is a fully managed and scalable metadata management service that empowers organizations to quickly discover, understand, and manage all of their data. In this quest you will start small by learning how to search and tag data assets and metadata with Data Catalog. After learning how to build your own tag templates that map to BigQuery table data, you will learn how to build MySQL, PostgreSQL, and SQLServer to Data Catalog Connectors.

Scopri di più

Complete the intermediate Engineer Data for Predictive Modeling with BigQuery ML skill badge to demonstrate skills in the following: building data transformation pipelines to BigQuery using Dataprep by Trifacta; using Cloud Storage, Dataflow, and BigQuery to build extract, transform, and load (ETL) workflows; and building machine learning models using BigQuery ML.

Scopri di più

This advanced-level quest is unique amongst the other catalog offerings. The labs have been curated to give IT professionals hands-on practice with topics and services that appear in the Google Cloud Certified Professional Data Engineer Certification. From Big Query, to Dataprep, to Cloud Composer, this quest is composed of specific labs that will put your Google Cloud data engineering knowledge to the test. Be aware that while practice with these labs will increase your skills and abilities, you will need other preparation, too. The exam is quite challenging and external studying, experience, and/or background in cloud data engineering is recommended. Looking for a hands on challenge lab to demonstrate your skills and validate your knowledge? On completing this quest, enroll in and finish the additional challenge lab at the end of the Engineer Data in the Google Cloud to receive an exclusive Google Cloud digital badge.

Scopri di più

Looking to build or optimize your data warehouse? Learn best practices to Extract, Transform, and Load your data into Google Cloud with BigQuery. In this series of interactive labs you will create and optimize your own data warehouse using a variety of large-scale BigQuery public datasets. BigQuery is Google's fully managed, NoOps, low cost analytics database. With BigQuery you can query terabytes and terabytes of data without having any infrastructure to manage or needing a database administrator. BigQuery uses SQL and can take advantage of the pay-as-you-go model. BigQuery allows you to focus on analyzing data to find meaningful insights. Looking for a hands on challenge lab to demonstrate your skills and validate your knowledge? On completing this quest, enroll in and finish the additional challenge lab at the end of this quest to receive an exclusive Google Cloud digital badge.

Scopri di più

Cloud SQL is a fully managed database service that stands out from its peers due to high performance, seamless integration, and impressive scalability. In this quest you will receive hands-on practice with the basics of Cloud SQL and quickly progress to advanced features, which you will apply to production frameworks and application environments. From creating instances and querying data with SQL, to building Deployment Manager scripts and connecting Cloud SQL instances with applications run on GKE containers, this quest will give you the knowledge and experience needed so you can start integrating this service right away.

Scopri di più

Completa il corso introduttivo con badge delle competenze Implementazione di Cloud Load Balancing per Compute Engine per dimostrare le tue competenze nei seguenti ambiti: creazione ed esecuzione del deployment di macchine virtuali in Compute Engine e configurazione di bilanciatori del carico di rete e delle applicazioni.

Scopri di più

In this introductory-level course, you get hands-on practice with the Google Cloud’s fundamental tools and services. Optional videos are provided to provide more context and review for the concepts covered in the labs. Google Cloud Essentials is a recommendeded first course for the Google Cloud learner - you can come in with little or no prior cloud knowledge, and come out with practical experience that you can apply to your first Google Cloud project. From writing Cloud Shell commands and deploying your first virtual machine, to running applications on Kubernetes Engine or with load balancing, Google Cloud Essentials is a prime introduction to the platform’s basic features.

Scopri di più