Earn the introductory skill badge by completing the Automate Data Capture at Scale with Document AI course. In this course, you learn how to extract, process, and capture data using Document AI.
TensorFlow is an open source software library for high performance numerical computation that's great for writing models that can train and run on platforms ranging from your laptop to a fleet of servers in the Cloud to an edge device. This quest takes you beyond the basics of using predefined models and teaches you how to build, train and deploy your own on Google Cloud.
Earn a skill badge by completing the Build Custom Processors with Document AI course. You learn how to extract data and classify documents by creating custom ML models specific to your business needs. This course teaches the foundation skills of building your own processors, working with optical character recognition, form parsing, processor creation, and uptraining the DocumentAI model.
Kursus ini menunjukkan cara menggunakan model AI/ML untuk tugas-tugas AI generatif di BigQuery. Melalui kasus penggunaan praktis yang melibatkan pengelolaan hubungan pelanggan (CRM), Anda akan mempelajari alur kerja pemecahan masalah bisnis dengan model Gemini. Untuk memudahkan pemahaman, kursus ini juga menyediakan panduan langkah demi langkah melalui solusi coding menggunakan kueri SQL dan notebook Python.
Dalam kursus ini, Anda akan mempelajari bagaimana Gemini, kolaborator yang didukung AI generatif dari Google Cloud, membantu menganalisis data pelanggan dan memprediksi penjualan produk. Anda juga akan mempelajari cara mengidentifikasi, mengategorikan, dan mengembangkan pelanggan baru menggunakan data pelanggan di BigQuery. Dengan menggunakan lab interaktif, Anda akan melihat bagaimana Gemini meningkatkan analisis data dan alur kerja machine learning. Duet AI berganti nama menjadi Gemini, yang merupakan model generasi berikutnya dari kami.
This course demonstrates the power of integrating Google Cloud services and tools with Workspace applications - like using Node.js to build a survey bot, the Natural Language API to recognize sentiment in a Google Doc, and building a chat bot with Apps Script.
This introductory-level quest shows application developers how the Google Cloud ecosystem could help them build secure, scalable, and intelligent cloud native applications. You learn how to develop and scale applications without setting up infrastructure, run data analytics, gain insights from data, and develop with pre-trained ML APIs to leverage machine learning even if you are not a Machine Learning expert. You will also experience seamless integration between various Google services and APIs to create intelligent apps.
Menyelesaikan badge keahlian tingkat menengah Menginspeksi Dokumen Multimedia dengan Multimodalitas Gemini dan RAG Multimodal untuk menunjukkan keterampilan dalam hal berikut ini: menggunakan prompt multimodal untuk mengekstrak informasi dari data teks dan visual dengan menghasilkan deskripsi video, dan mengambil informasi tambahan di luar video menggunakan multimodalitas dengan Gemini; membangun metadata dokumen yang berisi teks dan gambar dengan mendapatkan semua potongan teks yang relevan, dan mencetak kutipan dengan menggunakan Multimodal Retrieval Augmented Generation (RAG) dengan Gemini.
Dapatkan badge keahlian Pengantar dengan menyelesaikan kursus 3 Cara Menggunakan Cloud Speech API, tempat Anda mempelajari cara menggunakan alat API terkait ucapan untuk mensintesis dan mentranskripsikan ucapan.
Selesaikan badge keahlian tingkat menengah Mempelajari AI Generatif dengan Gemini API di Vertex AI untuk menunjukkan keterampilan dalam hal berikut: pembuatan teks, analisis gambar dan video untuk peningkatan kualitas pembuatan konten, serta penerapan teknik panggilan fungsi dalam Gemini API. Temukan cara memanfaatkan teknik Gemini yang canggih, menjelajahi pembuatan konten multimodal, dan memperluas kemampuan project yang didukung AI.
Dapatkan badge keahlian dengan menyelesaikan quest Dasar-Dasar Google Cloud Compute, dan pelajari cara menggunakan virtual machine (VM), persistent disk, dan server web menggunakan Compute Engine.
Complete the introductory Secure BigLake Data skill badge course to demonstrate skills with IAM, BigQuery, BigLake, and Data Catalog within Dataplex to create and secure BigLake tables.
Complete the intermediate Secure Software Delivery skill badge to demonstrate your proficiency in proactively integrating security into the software development lifecycle (SDLC) with DevSecOps principles. You'll learn how to utilize Google Kubernetes Engine (GKE) and Cloud Run for secure container image deployment, implement automated vulnerability scanning to proactively identify risks, and streamline application development with Artifact Registry while maintaining a focus on security. Additionally, you'll gain skills in integrating Cloud Build for robust development processes and implementing Admission Control Policies for fine-grained control over your environment.
Complete the introductory Get Started with Sensitive Data Protection skill badge course to demonstrate skills in the following: using Sensitive Data Protection services (including the Cloud Data Loss Prevention API) to inspect, redact, and de-identify sensitive data in Google Cloud.
Selesaikan badge keahlian pengantar Desain Perintah dalam Vertex AI untuk menunjukkan keterampilan Anda dalam hal berikut: rekayasa perintah, analisis gambar, dan teknik generatif multimodal, dalam Vertex AI. Pelajari cara membuat perintah yang efektif, memandu output AI generatif, dan menerapkan model Gemini dalam skenario pemasaran di dunia nyata.
In this series of labs you will learn how to use BigQuery to analyze NCAA basketball data with SQL. Build a Machine Learning Model to predict the outcomes of NCAA March Madness basketball tournament games.
Selesaikan badge keahlian tingkat menengah Menerapkan Dasar-Dasar Keamanan Cloud di Google Cloud untuk menunjukkan kemahiran dalam hal berikut: membuat dan menetapkan peran dengan Identity and Access Management (IAM); membuat dan mengelola akun layanan; memungkinkan konektivitas pribadi di seluruh jaringan virtual private cloud (VPC); membatasi akses aplikasi menggunakan Identity-Aware Proxy; mengelola kunci dan data terenkripsi dengan Cloud Key Management Service (KMS); dan membuat cluster Kubernetes pribadi.
Dapatkan badge keahlian dengan menyelesaikan kursus Membangun Jaringan Google Cloud yang Aman yang membahas resource yang terkait dengan beberapa jaringan untuk membangun, menskalakan, dan mengamankan aplikasi Anda di Google Cloud.
Dapatkan badge keahlian dengan menyelesaikan kursus Mengembangkan Jaringan Google Cloud Anda yang berisi pelajaran tentang berbagai cara untuk men-deploy dan memantau aplikasi, termasuk cara: menjelajahi peran IAM dan menambahkan/menghapus akses project, membuat jaringan VPC, men-deploy dan memantau VM Compute Engine, menulis kueri SQL, men-deploy dan memantau VM di Compute Engine, serta men-deploy aplikasi menggunakan Kubernetes dengan beberapa pendekatan deployment.
Kursus pengantar ini unik dibandingkan penawaran kursus lainnya. Semua lab dalam kursus ini telah diseleksi untuk membekali profesional IT dengan praktik langsung terkait berbagai topik dan layanan yang muncul di Sertifikasi Associate Cloud Engineer yang Tersertifikasi Google Cloud. Dari IAM, networking, hingga deployment Kubernetes Engine, kursus ini terdiri atas beberapa lab khusus yang akan menguji pengetahuan Anda terkait Google Cloud. Perlu diketahui bahwa meskipun praktik dalam lab akan meningkatkan keterampilan dan kemampuan Anda, sebaiknya Anda juga meninjau panduan ujian dan referensi persiapan lainnya yang tersedia.
Selesaikan badge keahlian Mengimplementasikan Alur Kerja DevOps di Google Cloud tingkat menengah untuk menunjukkan keterampilan dalam hal berikut: membuat repositori git dengan Cloud Source Repositories, meluncurkan, mengelola, dan menskalakan deployment di Google Kubernetes Engine (GKE), serta merancang pipeline CI/CD yang mengotomatiskan pembangunan dan deployment image container ke GKE.
Dapatkan badge keahlian dengan menyelesaikan kursus Arsitektur Cloud: Merancang, Mengimplementasikan, dan Mengelola untuk menunjukkan keahlian Anda dalam hal berikut: men-deploy situs yang dapat diakses secara publik menggunakan server web Apache, mengonfigurasi VM Compute Engine menggunakan skrip startup, mengonfigurasi RDP yang aman menggunakan Bastion host Windows dan aturan firewall, membangun dan men-deploy image Docker ke cluster Kubernetes serta kemudian mengupdatenya, membuat instance CloudSQL, dan mengimpor database MySQL. Kursus badge keahlian ini merupakan referensi yang bagus untuk memahami topik yang akan muncul di ujian sertifikasi Professional Cloud Architect Tersertifikasi Google Cloud. Badge keahlian merupakan badge digital eksklusif yang diberikan oleh Google Cloud sebagian pengakuan atas kemahiran Anda dalam menggunakan produk dan layanan Google Cloud serta menguji kemampuan Anda dalam menerapkan pengetahuan di lingkungan praktis yang interaktif. Selesaikan kursu…
Selesaikan badge keahlian Men-deploy Aplikasi Kubernetes di Google Cloud tingkat menengah untuk menunjukkan keterampilan dalam hal berikut ini: mengonfigurasi dan membangun image container Docker, membuat dan mengelola cluster Google Kubernetes Engine (GKE), memanfaatkan kubectl untuk pengelolaan cluster yang efisien, dan men-deploy aplikasi Kubernetes dengan praktik continuous delivery (CD) yang andal.
Selesaikan badge keahlian Membangun Infrastruktur dengan Terraform di Google Cloud tingkat menengah untuk menunjukkan keterampilan dalam hal berikut: Prinsip Infrastruktur sebagai Kode (IaC) menggunakan Terraform, penyediaan dan pengelolaan resource Google Cloud dengan konfigurasi Terraform, pengelolaan status yang efektif (lokal dan jarak jauh), serta modularisasi kode Terraform agar dapat digunakan kembali dan diatur.
Dapatkan badge keahlian pengantar dengan menyelesaikan kursus badge keahlian Membangun Situs di Google Cloud. Kursus ini didasarkan pada serial Get Cooking in Cloud dan mencakup:Men-deploy situs di Cloud RunMenghosting aplikasi web di Compute EngineMembuat, men-deploy, dan menskalakan situs Anda di Google Kubernetes EngineBermigrasi dari aplikasi monolitik ke arsitektur microservice menggunakan Cloud Build
Selesaikan badge keahlian pengantar Menyiapkan Data untuk ML API di Google Cloud untuk menunjukkan keterampilan Anda dalam hal berikut: menghapus data dengan Dataprep by Trifacta, menjalankan pipeline data di Dataflow, membuat cluster dan menjalankan tugas Apache Spark di Dataproc, dan memanggil beberapa ML API, termasuk Cloud Natural Language API, Google Cloud Speech-to-Text API, dan Video Intelligence API.
Selesaikan badge keahlian tingkat menengah Mengembangkan Aplikasi Serverless dengan Firebase untuk menunjukkan keterampilan dalam hal berikut ini: membuat arsitektur dan membangun aplikasi web serverless dengan Firebase, memanfaatkan pengelolaan database Firestore, mengotomatiskan proses deployment menggunakan Cloud Build, dan mengintegrasikan fungsi Asisten Google ke dalam aplikasi.
Dapatkan badge keahlian dengan menyelesaikan kursus Menyiapkan Lingkungan Pengembangan Aplikasi di Google Cloud, yang memungkinkan Anda mempelajari cara membangun dan menghubungkan infrastruktur cloud yang berpusat pada penyimpanan menggunakan kemampuan dasar teknologi berikut: Cloud Storage, Identity and Access Management, Cloud Functions, dan Pub/Sub.
Selesaikan badge keahlian pengantar Mengimplementasikan Cloud Load Balancing untuk Compute Engine untuk menunjukkan keterampilan dalam hal berikut: membuat dan men-deploy virtual machine di Compute Engine serta mengonfigurasi load balancer aplikasi dan jaringan.
The Google Cloud Computing Foundations courses are for individuals with little to no background or experience in cloud computing. They provide an overview of concepts central to cloud basics, big data, and machine learning, and where and how Google Cloud fits in. By the end of the series of courses, learners will be able to articulate these concepts and demonstrate some hands-on skills. The courses should be completed in the following order: 1. Google Cloud Computing Foundations: Cloud Computing Fundamentals 2. Google Cloud Computing Foundations: Infrastructure in Google Cloud 3. Google Cloud Computing Foundations: Networking and Security in Google Cloud 4. Google Cloud Computing Foundations: Data, ML, and AI in Google Cloud This third course covers cloud automation and management tools and building secure networks.
Flutter is Google's UI toolkit for building beautiful, natively compiled applications for mobile, web, and desktop from a single codebase. In this quest you will learn how to create a Flutter app using generated template code. Be sure to tag #flutterfestival in your social posts!
Dart is a client-optimized language for developing fast apps on any platform. Dart also forms the foundation of Flutter by providing the language and runtimes that power Flutter apps. In this quest you will learn the basics of Dart in a prepared development environment. Be sure to tag #flutterfestival in your social posts!
Big data, machine learning, dan kecerdasan buatan menjadi topik komputasi yang populer saat ini, tetapi bidang tersebut sangat terspesialisasi dan materi pengantarnya sulit diperoleh. Untungnya, Google Cloud menyediakan layanan yang mudah digunakan dalam bidang tersebut, dan melalui kursus tingkat pengantar ini, Anda dapat mengambil langkah pertama dengan alat seperti BigQuery, Cloud Speech API, dan Video Intelligence.
Selesaikan badge keahlian pengantar Menyiapkan Data untuk Dasbor dan Laporan Looker untuk menunjukkan keterampilan dalam hal berikut: memfilter, mengurutkan, dan melakukan pivot pada data; menggabungkan hasil dari sejumlah Eksplorasi Looker; serta menggunakan fungsi dan operator untuk membangun dasbor dan laporan Looker untuk analisis dan visualisasi data.
Using large scale computing power to recognize patterns and "read" images is one of the foundational technologies in AI, from self-driving cars to facial recognition. The Google Cloud Platform provides world class speed and accuracy via systems that can utilized by simply calling APIs. With these and a host of other APIs, GCP has a tool for just about any machine learning job. In this introductory quest, you will get hands-on practice with machine learning as it applies to image processing by taking labs that will enable you to label images, detect faces and landmarks, as well as extract, analyze, and translate text from within images.
Bukan rahasia lagi bahwa machine learning adalah salah satu bidang yang berkembang paling cepat di ranah teknologi, dan Google Cloud Platform telah berperan penting dalam memajukan pengembangannya. Dengan berbagai API, GCP memiliki alat untuk hampir semua tugas machine learning. Dalam kursus pengantar ini, Anda akan melakukan praktik langsung dengan machine learning sebagaimana diterapkan pada pemrosesan bahasa, melalui serangkaian lab yang akan memungkinkan Anda mengekstrak entity dari teks, melakukan analisis sentimen dan sintaksis, serta menggunakan Speech to Text API untuk melakukan transkripsi.
Want to scale your data analysis efforts without managing database hardware? Learn the best practices for querying and getting insights from your data warehouse with this interactive series of BigQuery labs. BigQuery is Google's fully managed, NoOps, low cost analytics database. With BigQuery you can query terabytes and terabytes of data without having any infrastructure to manage or needing a database administrator. BigQuery uses SQL and can take advantage of the pay-as-you-go model. BigQuery allows you to focus on analyzing data to find meaningful insights.
Selesaikan badge keahlian pengantar Mendapatkan Insight dari Data BigQuery untuk menunjukkan keterampilan dalam hal berikut: menulis kueri SQL, membuat kueri tabel publik, memuat sampel data ke dalam BigQuery, memecahkan masalah error sintaksis umum dengan validator kueri di BigQuery, dan membuat laporan di Looker Studio dengan menghubungkannya ke data BigQuery.