Teilnehmen Anmelden

Dawid Chomicz

Mitglied seit 2023

Build Data Lakes and Data Warehouses on Google Cloud Earned Sep 10, 2024 EDT
Streamanalyse in BigQuery Earned Jul 26, 2024 EDT
Data Warehouse mit BigQuery erstellen Earned Jul 12, 2024 EDT
Preparing for your Professional Data Engineer Journey Earned Jul 12, 2024 EDT
Informationen aus BigQuery-Daten ableiten Earned Jul 11, 2024 EDT
Daten für ML-APIs in Google Cloud vorbereiten Earned Jun 27, 2024 EDT
Daten für die Vorhersagemodellierung mit BigQuery ML vorbereiten Earned Jun 10, 2024 EDT
Data Lake Modernization on Google Cloud: Cloud Composer Earned Jan 4, 2024 EST

While the traditional approaches of using data lakes and data warehouses can be effective, they have shortcomings, particularly in large enterprise environments. This course introduces the concept of a data lakehouse and the Google Cloud products used to create one. A lakehouse architecture uses open-standard data sources and combines the best features of data lakes and data warehouses, which addresses many of their shortcomings.

Weitere Informationen

Weisen Sie mit einem Skill-Logo Ihre Kenntnisse über Streamanalyse in BigQuery nach. In diesem Kurs wenden Sie sowohl Pub/Sub und Dataflow als auch BigQuery an, um Daten für die Analyse zu streamen.

Weitere Informationen

Mit dem Skill-Logo zum Kurs Data Warehouse mit BigQuery erstellen weisen Sie fortgeschrittene Kenntnisse in folgenden Bereichen nach: Daten zusammenführen, um neue Tabellen zu erstellen, Probleme mit Joins lösen, Daten mit Unions anhängen, nach Daten partitionierte Tabellen erstellen und JSON, Arrays sowie Strukturen in BigQuery nutzen.

Weitere Informationen

This course helps learners create a study plan for the PDE (Professional Data Engineer) certification exam. Learners explore the breadth and scope of the domains covered in the exam. Learners assess their exam readiness and create their individual study plan.

Weitere Informationen

Mit dem Skill-Logo zum Kurs Informationen aus BigQuery-Daten ableiten weisen Sie Grundkenntnisse in folgenden Bereichen nach: Schreiben von SQL-Abfragen, Abfragen öffentlicher Tabellen, Laden von Beispieldaten in BigQuery, Beheben häufig auftretender Syntaxfehler mithilfe der Abfragevalidierung in BigQuery und Erstellen von Berichten in Looker Studio durch Herstellen einer Verbindung zu BigQuery-Daten.

Weitere Informationen

Mit dem Skill-Logo zum Kurs Daten für ML-APIs in Google Cloud vorbereiten weisen Sie Grundkenntnisse in folgenden Bereichen nach: Bereinigen von Daten mit Dataprep von Trifacta, Ausführen von Datenpipelines in Dataflow, Erstellen von Clustern und Ausführen von Apache Spark-Jobs in Dataproc sowie Aufrufen von ML-APIs, einschließlich der Cloud Natural Language API, Cloud Speech-to-Text API und Video Intelligence API.

Weitere Informationen

Mit dem Skill-Logo zum Kurs Daten für die Vorhersagemodellierung mit BigQuery ML vorbereiten weisen Sie fortgeschrittene Kenntnisse in folgenden Bereichen nach: Erstellen von Pipelines für die Datentransformation nach BigQuery mithilfe von Dataprep von Trifacta; Extrahieren, Transformieren und Laden (ETL) von Workflows mit Cloud Storage, Dataflow und BigQuery; und Erstellen von Machine-Learning-Modellen mithilfe von BigQuery ML.

Weitere Informationen

Welcome to Cloud Composer, where we discuss how to orchestrate data lake workflows with Cloud Composer.

Weitere Informationen