Inscreva-se Fazer login

Daniele Grotti

Participante desde 2021

Liga Bronze

8040 pontos
IA responsável: como aplicar os princípios de IA com o Google Cloud Earned Apr 24, 2025 EDT
Introdução à IA responsável Earned Apr 24, 2025 EDT
Introdução aos modelos de linguagem grandes Earned Apr 24, 2025 EDT
Operações de Machine Learning (MLOps) para IA Generativa Earned Mar 29, 2025 EDT
Introdução ao Vertex AI Studio Earned Feb 21, 2025 EST
Como criar modelos de legenda para imagens Earned Feb 18, 2025 EST
Modelos de transformador e modelo de BERT Earned Feb 17, 2025 EST
Arquitetura de codificador-decodificador Earned Feb 13, 2025 EST
Mecanismo de atenção Earned Feb 12, 2025 EST
Introdução à geração de imagens Earned Feb 12, 2025 EST
Introdução à IA generativa Earned Oct 21, 2024 EDT
Princípios básicos de identidade e segurança Earned May 15, 2021 EDT
Como automatizar a implantação e gerenciar o tráfego em uma rede do Google Cloud Earned May 12, 2021 EDT
Valor de referência: infraestrutura Earned May 8, 2021 EDT
Google Cloud Essentials Earned May 7, 2021 EDT

Quanto maior é o uso da inteligência artificial empresarial e do machine learning, mais importante é desenvolvê-los de maneira responsável. Para muitos, falar sobre a IA responsável pode ser mais fácil, mas colocá-la em prática é um desafio. Se você tem interesse em aprender a operacionalizar a IA responsável na sua organização, este curso é para você. Nele, você vai aprender como o Google Cloud faz isso hoje, além de analisar práticas recomendadas e lições aprendidas, a fim de criar uma base para elaborar sua própria abordagem de IA responsável.

Saiba mais

Este é um curso de microaprendizagem introdutório que busca explicar a IA responsável: o que é, qual é a importância dela e como ela é aplicada nos produtos do Google. Ele também contém os 7 princípios de IA do Google.

Saiba mais

Este é um curso de microlearning de nível introdutório que explica o que são modelos de linguagem grandes (LLM), os casos de uso em que podem ser aplicados e como é possível fazer o ajuste de comandos para aprimorar o desempenho dos LLMs. O curso também aborda as ferramentas do Google que ajudam a desenvolver seus próprios apps de IA generativa.

Saiba mais

O objetivo desse curso é equipar você com o conhecimento e as ferramentas necessários para resolver os desafios enfrentados por equipes de MLOps durante o desenvolvimento e gerenciamento de modelos de IA generativa. Também queremos mostrar como a Vertex AI ajuda equipes de IA a simplificar processos de MLOps e a alcançar o sucesso em projetos de IA generativa.

Saiba mais

Neste curso, vamos conhecer o Vertex AI Studio, uma ferramenta para interagir com modelos de IA generativa, prototipar ideias comerciais e colocá-las em produção. Com a ajuda de um caso de uso imersivo, lições interessantes e um laboratório, você vai conhecer o ciclo de vida do comando à produção, além de usar o Vertex AI Studio para aplicativos multimodais do Gemini, design e engenharia de comandos e ajuste de modelos. O objetivo é permitir que você descubra todo o potencial da IA generativa nos seus projetos com o Vertex AI Studio.

Saiba mais

Neste curso, ensinamos a criar um modelo de legenda para imagens usando aprendizado profundo. Você vai aprender sobre os diferentes componentes de um modelo de legenda para imagens, como o codificador e decodificador, e de que forma treinar e avaliar seu modelo. Ao final deste curso, você será capaz de criar e usar seus próprios modelos de legenda para imagens.

Saiba mais

Este curso é uma introdução à arquitetura de transformador e ao modelo de Bidirectional Encoder Representations from Transformers (BERT, na sigla em inglês). Você vai aprender sobre os principais componentes da arquitetura de transformador, como o mecanismo de autoatenção, e como eles são usados para construir o modelo de BERT. Também vai conhecer as diferentes tarefas onde é possível usar o BERT, como classificação de texto, respostas a perguntas e inferência de linguagem natural. O curso leva aproximadamente 45 minutos.

Saiba mais

Este curso apresenta um resumo da arquitetura de codificador-decodificador, que é uma arquitetura de machine learning avançada e frequentemente usada para tarefas sequência para sequência (como tradução automática, resumo de textos e respostas a perguntas). Você vai conhecer os principais componentes da arquitetura de codificador-decodificador e aprender a treinar e disponibilizar esses modelos. No tutorial do laboratório relacionado, você vai codificar uma implementação simples da arquitetura de codificador-decodificador para geração de poesia desde a etapa inicial no TensorFlow.

Saiba mais

Este curso é uma introdução ao mecanismo de atenção, uma técnica avançada que permite que as redes neurais se concentrem em partes específicas de uma sequência de entrada. Você vai entender como a atenção funciona e como ela pode ser usada para melhorar o desempenho de várias tarefas de machine learning (como tradução automática, resumo de texto e resposta a perguntas).

Saiba mais

Neste curso, apresentamos os modelos de difusão, uma família de modelos de machine learning promissora no campo da geração de imagens. Os modelos de difusão são baseados na física, mais especificamente na termodinâmica. Nos últimos anos, eles se popularizaram no setor e nas pesquisas. Esses modelos servem de base para ferramentas e modelos avançados de geração de imagem no Google Cloud. Este curso é uma introdução à teoria dos modelos de difusão e como eles devem ser treinados e implantados na Vertex AI.

Saiba mais

Este é um curso de microaprendizagem introdutório que busca explicar a IA generativa: o que é, como é usada e por que ela é diferente de métodos tradicionais de machine learning. O curso também aborda as ferramentas do Google que ajudam você a desenvolver apps de IA generativa.

Saiba mais

A segurança é uma prioridade indiscutível dos serviços do Google Cloud, por isso temos ferramentas específicas para garantir a proteção e a identidade nos seus projetos. Neste curso introdutório, você vai conhecer na prática o serviço Identity and Access Management (IAM) do Google Cloud, que é o melhor para gerenciar contas de usuários e máquinas virtuais. Você vai ganhar experiência com segurança de rede provisionando VPCs e VPNs, além de conhecer as ferramentas disponíveis para proteger contra ameaças e perda de dados.

Saiba mais

Redes são a base fundamental da computação em nuvem. Elas sustentam a estrutura do Google Cloud e conectam todos os recursos e serviços entre si. Este curso aborda os serviços de rede essenciais do Google Cloud e oferece exercícios práticos com ferramentas especializadas para desenvolver redes robustas. Você vai conhecer os detalhes das VPCs e aprenderá a criar balanceadores de carga de nível empresarial. Ao fazer o curso Como automatizar a implantação e gerenciar o tráfego em uma rede do Google Cloud, você terá a experiência prática necessária para começar a criar redes robustas imediatamente.

Saiba mais

Este curso é perfeito para desenvolvedores de nuvem iniciantes que estão procurando prática além do Google Cloud Essentials. Você vai ganhar experiência em laboratórios que se aprofundam no Cloud Storage e em outros serviços de aplicativos fundamentais, como Monitoring e Cloud Functions. Você vai desenvolver habilidades importantes que podem ser aplicadas a qualquer iniciativa do Google Cloud.

Saiba mais

Nesta Quest de nível introdutório, você terá acesso a treinamentos práticos com os principais serviços e ferramentas do Google Cloud Platform. A Quest "GCP Essentials" é a primeira recomendação para quem está aprendendo a usar o Google Cloud. Com ela, quem tem pouco ou nenhum conhecimento sobre nuvem ganha experiência prática para aplicar no primeiro projeto do GCP. Esta Quest proporciona um contato inicial com os recursos fundamentais da plataforma, como o registro de comandos do Cloud Shell, a implementação da sua primeira máquina virtual, a execução de aplicativos no Kubernetes Engine e o balanceamento de carga. Assista também os vídeos rápidos que explicam os conceitos principais de cada laboratório.

Saiba mais