Naufal Raihan R
成为会员时间:2024
成为会员时间:2024
本课程介绍 Google Cloud 中的 AI 和机器学习 (ML) 服务,这些服务可构建预测式和生成式 AI 项目。本课程探讨从数据到 AI 的整个生命周期中可用的技术、产品和工具,包括 AI 基础、开发和解决方案。通过引人入胜的学习体验和实操练习,本课程可帮助数据科学家、AI 开发者和机器学习工程师提升技能和知识水平。
探索生成式 AI - Vertex AI 课程汇集了多组实验, 指导用户在 Google Cloud 平台上运用生成式 AI。参与实验,您将了解 如何使用 Vertex AI PaLM API 系列模型,包括 text-bison、chat-bison 和 textembedding-gecko。您还将了解提示设计、最佳实践, 以及如何使用生成式 AI 进行构思、文本分类、文本提取、文本 总结等任务。您还将学习如何通过 Vertex AI 自定义训练对基础模型进行调优, 并将模型部署到 Vertex AI 端点。
Using large scale computing power to recognize patterns and "read" images is one of the foundational technologies in AI, from self-driving cars to facial recognition. The Google Cloud Platform provides world class speed and accuracy via systems that can utilized by simply calling APIs. With these and a host of other APIs, GCP has a tool for just about any machine learning job. In this introductory quest, you will get hands-on practice with machine learning as it applies to image processing by taking labs that will enable you to label images, detect faces and landmarks, as well as extract, analyze, and translate text from within images.
在本课程中,您将了解 Gemini(Google Cloud 的生成式 AI 赋能的协作工具)如何帮助分析客户数据并预测产品销售情况。此外,您还将了解如何在 BigQuery 中使用客户数据来识别、开发新客户并对其进行分类。通过动手实验,您将体验 Gemini 如何改进数据分析和机器学习工作流。 Duet AI 已更名为 Gemini,这是我们的新一代模型。
众所周知,机器学习是发展最快的技术领域之一, Google Cloud Platform 在推动其发展方面发挥了重要作用。 GCP 提供了一系列 API,几乎可以满足任何机器学习作业的需求。在 本入门课程中,您将了解机器学习在语言处理方面的运用, 通过实操实验学习 如何从文本中提取实体,执行情感和语法分析,以及 使用 Speech-to-Text API 进行转写。
大数据、机器学习和人工智能是当今计算领域的热门话题, 但这些领域的专业性很强,因而很难找到 入门资料。幸运的是,Google Cloud 在这些领域提供了方便用户使用的服务, 通过本入门级课程,您可以 开始学习使用 BigQuery、Cloud Speech API 和 Video Intelligence 等工具。
Earn a skill badge by completing the Analyze Images with the Cloud Vision API quest, where you discover how to leverage the Cloud Vision API for various tasks, including extracting text from images.
Complete the intermediate Manage Kubernetes in Google Cloud skill badge course to demonstrate skills in the following: managing deployments with kubectl, monitoring and debugging applications on Google Kubernetes Engine (GKE), and continuous delivery techniques.
Complete the introductory Build LookML Objects in Looker skill badge course to demonstrate skills in the following: building new dimensions and measures, views, and derived tables; setting measure filters and types based on requirements; updating dimensions and measures; building and refining Explores; joining views to existing Explores; and deciding which LookML objects to create based on business requirements.
Earn the intermediate Skill Badge by completing the Classify Images with TensorFlow on Google Cloud skill badge course where you learn how to use TensorFlow and Vertex AI to create and train machine learning models. You primarily interact with Vertex AI Workbench user-managed notebooks.
This is the fifth of five courses in the Google Cloud Data Analytics Certificate. In this course, you’ll combine and apply the foundational knowledge and skills from courses 1-4 in a hands-on Capstone project that focuses on the full data lifecycle project. You’ll practice using cloud-based tools to acquire, store, process, analyze, visualize, and communicate data insights effectively. By the end of the course, you’ll have completed a project demonstrating their proficiency in effectively structuring data from multiple sources, presenting solutions to varied stakeholders, and visualizing data insights using cloud-based software. You’ll also update your resume and practice interview techniques to help prepare for applying and interviewing for jobs.
This is the fourth of five courses in the Google Cloud Data Analytics Certificate. In this course, you’ll focus on developing skills in the five key stages of visualizing data in the cloud: storytelling, planning, exploring data, building visualizations, and sharing data with others. You’ll also gain experience using UI/UX skills to wireframe impactful, cloud-native visualizations and work with cloud-native data visualization tools to explore datasets, create reports, and build dashboards that drive decisions and foster collaboration.
This is the second of five courses in the Google Cloud Data Analytics Certificate. In this course, you’ll explore how data is structured and organized. You’ll gain hands-on experience with the data lakehouse architecture and cloud components like BigQuery, Google Cloud Storage, and DataProc to efficiently store, analyze, and process large datasets.
This is the third of five courses in the Google Cloud Data Analytics Certificate. In this course, you’ll begin by getting an overview of the data journey, from collection to insights. You’ll then learn how to use SQL to transform raw data into a usable format. Next, you’ll learn how to transform high volumes of data with a data pipeline. Finally, you’ll gain experience applying transformation strategies to real data sets to solve business needs.
This is the first of five courses in the Google Cloud Data Analytics Certificate. In this course, you’ll define the field of cloud data analysis and describe roles and responsibilities of a cloud data analyst as they relate to data acquisition, storage, processing, and visualization. You’ll explore the architecture of Google Cloud-based tools, like BigQuery and Cloud Storage, and how they are used to effectively structure, present, and report data.
在众多课程中,本入门课程独具特色。 这些实验经过精心设计,旨在让 IT 专业人员通过实践掌握 Google Cloud 认证 Associate Cloud Engineer 考核中的各项主题和服务内容。从 IAM 到网络组建和管理, 再到 Kubernetes Engine 部署,本课程将通过特定实验 检验您的 Google Cloud 知识掌握情况。请注意,虽然这些实操 实验有助于提升您的技能和能力,我们仍建议您同时查阅 考试指南和其他可用的备考资源。