加入 登录

Vebri Satriadi

成为会员时间:2020

白银联赛

24630 积分
Google Cloud Computing Foundations: Data, ML, and AI in Google Cloud Earned Sep 14, 2024 EDT
Mitigating Security Vulnerabilities on Google Cloud Earned Sep 13, 2024 EDT
Managing Machine Learning Projects with Google Cloud Earned Sep 12, 2024 EDT
面向数据科学家和分析师的 Gemini Earned Sep 11, 2024 EDT
适用于应用开发者的 Gemini Earned Sep 11, 2024 EDT
探索生成式 AI - Vertex AI Earned Sep 11, 2024 EDT
Analyze Sentiment with Natural Language API Earned Sep 10, 2024 EDT
Analyze Images with the Cloud Vision API Earned Sep 10, 2024 EDT
在 Google Cloud 上使用 Terraform 构建基础设施 Earned Sep 10, 2024 EDT
Manage Kubernetes in Google Cloud Earned Sep 8, 2024 EDT
Data Catalog Fundamentals Earned Jul 8, 2024 EDT
Serverless Data Processing with Dataflow: Foundations Earned May 22, 2024 EDT
Build Streaming Data Pipelines on Google Cloud Earned May 19, 2024 EDT
Build Data Lakes and Data Warehouses on Google Cloud Earned May 18, 2024 EDT

The Google Cloud Computing Foundations courses are for individuals with little to no background or experience in cloud computing. They provide an overview of concepts central to cloud basics, big data, and machine learning, and where and how Google Cloud fits in. By the end of the series of courses, learners will be able to articulate these concepts and demonstrate some hands-on skills. The courses should be completed in the following order: 1. Google Cloud Computing Foundations: Cloud Computing Fundamentals 2. Google Cloud Computing Foundations: Infrastructure in Google Cloud 3. Google Cloud Computing Foundations: Networking and Security in Google Cloud 4. Google Cloud Computing Foundations: Data, ML, and AI in Google Cloud This final course in the series reviews managed big data services, machine learning and its value, and how to demonstrate your skill set in Google Cloud further by earning Skill Badges.

了解详情

In this self-paced training course, participants learn mitigations for attacks at many points in a Google Cloud-based infrastructure, including Distributed Denial-of-Service attacks, phishing attacks, and threats involving content classification and use. They also learn about the Security Command Center, cloud logging and audit logging, and using Forseti to view overall compliance with your organization's security policies.

了解详情

Business professionals in non-technical roles have a unique opportunity to lead or influence machine learning projects. If you have questions about machine learning and want to understand how to use it, without the technical jargon, this course is for you. Learn how to translate business problems into machine learning use cases and vet them for feasibility and impact. Find out how you can discover unexpected use cases, recognize the phases of an ML project and considerations within each, and gain confidence to propose a custom ML use case to your team or leadership or translate the requirements to a technical team.

了解详情

在本课程中,您将了解 Gemini(Google Cloud 的生成式 AI 赋能的协作工具)如何帮助分析客户数据并预测产品销售情况。此外,您还将了解如何在 BigQuery 中使用客户数据来识别、开发新客户并对其进行分类。通过动手实验,您将体验 Gemini 如何改进数据分析和机器学习工作流。 Duet AI 已更名为 Gemini,这是我们的新一代模型。

了解详情

在本课程中,您将了解 Google Cloud 中依托生成式 AI 技术的协作工具 Gemini 如何帮助开发者构建应用。您将学习如何向 Gemini 输入提示,让其为您解释代码、推荐 Google Cloud 服务并为您的应用生成代码。您将通过实操实验体验 Gemini 对应用开发工作流的改进作用。 Duet AI 已更名为 Gemini,这是我们的新一代模型。

了解详情

探索生成式 AI - Vertex AI 课程汇集了多组实验, 指导用户在 Google Cloud 平台上运用生成式 AI。参与实验,您将了解 如何使用 Vertex AI PaLM API 系列模型,包括 text-bison、chat-bison 和 textembedding-gecko。您还将了解提示设计、最佳实践, 以及如何使用生成式 AI 进行构思、文本分类、文本提取、文本 总结等任务。您还将学习如何通过 Vertex AI 自定义训练对基础模型进行调优, 并将模型部署到 Vertex AI 端点。

了解详情

Earn a skill badge by completing the Analyze Sentiment with Natural Language API quest, where you learn how the API derives sentiment from text.

了解详情

Earn a skill badge by completing the Analyze Images with the Cloud Vision API quest, where you discover how to leverage the Cloud Vision API for various tasks, including extracting text from images.

了解详情

完成在 Google Cloud 上使用 Terraform 构建基础设施技能徽章中级课程, 展示您在以下方面的技能:在使用 Terraform 时遵循基础设施即代码 (IaC) 原则;利用 Terraform 配置 来预配和管理 Google Cloud 资源;管理有效状态(本地和远程);以及将 Terraform 代码模块化,以方便重复使用和整理。

了解详情

Complete the intermediate Manage Kubernetes in Google Cloud skill badge course to demonstrate skills in the following: managing deployments with kubectl, monitoring and debugging applications on Google Kubernetes Engine (GKE), and continuous delivery techniques.

了解详情

Data Catalog is deprecated and will be discontinued on January 30, 2026. You can still complete this course if you want to. For steps to transition your Data Catalog users, workloads, and content to Dataplex Catalog, see Transition from Data Catalog to Dataplex Catalog (https://cloud.google.com/dataplex/docs/transition-to-dataplex-catalog). Data Catalog is a fully managed and scalable metadata management service that empowers organizations to quickly discover, understand, and manage all of their data. In this quest you will start small by learning how to search and tag data assets and metadata with Data Catalog. After learning how to build your own tag templates that map to BigQuery table data, you will learn how to build MySQL, PostgreSQL, and SQLServer to Data Catalog Connectors.

了解详情

This course is part 1 of a 3-course series on Serverless Data Processing with Dataflow. In this first course, we start with a refresher of what Apache Beam is and its relationship with Dataflow. Next, we talk about the Apache Beam vision and the benefits of the Beam Portability framework. The Beam Portability framework achieves the vision that a developer can use their favorite programming language with their preferred execution backend. We then show you how Dataflow allows you to separate compute and storage while saving money, and how identity, access, and management tools interact with your Dataflow pipelines. Lastly, we look at how to implement the right security model for your use case on Dataflow.

了解详情

In this course you will get hands-on in order to work through real-world challenges faced when building streaming data pipelines. The primary focus is on managing continuous, unbounded data with Google Cloud products.

了解详情

While the traditional approaches of using data lakes and data warehouses can be effective, they have shortcomings, particularly in large enterprise environments. This course introduces the concept of a data lakehouse and the Google Cloud products used to create one. A lakehouse architecture uses open-standard data sources and combines the best features of data lakes and data warehouses, which addresses many of their shortcomings.

了解详情