Vebri Satriadi
Mitglied seit 2020
Silver League
24630 Punkte 
Mitglied seit 2020
 
The Google Cloud Computing Foundations courses are for individuals with little to no background or experience in cloud computing. They provide an overview of concepts central to cloud basics, big data, and machine learning, and where and how Google Cloud fits in. By the end of the series of courses, learners will be able to articulate these concepts and demonstrate some hands-on skills. The courses should be completed in the following order: 1. Google Cloud Computing Foundations: Cloud Computing Fundamentals 2. Google Cloud Computing Foundations: Infrastructure in Google Cloud 3. Google Cloud Computing Foundations: Networking and Security in Google Cloud 4. Google Cloud Computing Foundations: Data, ML, and AI in Google Cloud This final course in the series reviews managed big data services, machine learning and its value, and how to demonstrate your skill set in Google Cloud further by earning Skill Badges.
In this self-paced training course, participants learn mitigations for attacks at many points in a Google Cloud-based infrastructure, including Distributed Denial-of-Service attacks, phishing attacks, and threats involving content classification and use. They also learn about the Security Command Center, cloud logging and audit logging, and using Forseti to view overall compliance with your organization's security policies.
Business professionals in non-technical roles have a unique opportunity to lead or influence machine learning projects. If you have questions about machine learning and want to understand how to use it, without the technical jargon, this course is for you. Learn how to translate business problems into machine learning use cases and vet them for feasibility and impact. Find out how you can discover unexpected use cases, recognize the phases of an ML project and considerations within each, and gain confidence to propose a custom ML use case to your team or leadership or translate the requirements to a technical team.
In diesem Kurs erfahren Sie, wie Sie Gemini, ein auf generativer KI basierendes Produkt von Google Cloud, bei der Analyse von Kundendaten und der Prognose von Produktverkäufen unterstützen kann. Außerdem lernen Sie, wie Sie mithilfe von Kundendaten in BigQuery Neukunden identifizieren, kategorisieren und gewinnen können. In den praxisorientierten Labs erfahren Sie, wie Gemini Datenanalysen und Workflows für Machine Learning optimiert. Duet AI wurde umbenannt in Gemini, unser Modell der nächsten Generation.
In diesem Kurs erfahren Sie, wie Gemini, ein auf generativer KI basierendes Produkt von Google Cloud, Entwickler beim Erstellen von Anwendungen unterstützt. Sie lernen die Prompts kennen, mit denen Gemini Code erklären, Google Cloud-Dienste empfehlen und Code für Ihre Anwendungen generieren kann. In einem praxisorientierten Lab können Sie sich davon überzeugen, wie die Anwendungsentwicklung durch Gemini verbessert wird. Duet AI wurde umbenannt in Gemini, unser Modell der nächsten Generation.
Der Kurs „Generative KI kennenlernen – Vertex AI“ umfasst eine Reihe von Labs zur Verwendung von generativer KI in Google Cloud. In den Labs lernen Sie, wie Sie die Modelle der Vertex AI PaLM API-Familie verwenden, einschließlich text-bison, chat-bison, und textembedding-gecko. Außerdem lernen Sie, wie Sie Prompts gestalten, Best Practices anwenden und die Modelle für Ideenfindung, Textklassifizierung, Textextraktion, Textzusammenfassungen und mehr verwenden. Weiterhin erfahren Sie, wie Sie ein Foundation Model durch das Trainieren über benutzerdefiniertes Training in Vertex AI optimieren und es in einem Vertex AI-Endpunkt bereitstellen.
Earn a skill badge by completing the Analyze Sentiment with Natural Language API quest, where you learn how the API derives sentiment from text.
Earn a skill badge by completing the Analyze Images with the Cloud Vision API quest, where you discover how to leverage the Cloud Vision API for various tasks, including extracting text from images.
Mit dem Skill-Logo Infrastruktur mit Terraform in Google Cloud erstellen weisen Sie fortgeschrittene Kenntnisse in folgenden Bereichen nach: Grundsätze von Infrastruktur als Code (IaC) unter Verwendung von Terraform, Bereitstellen und Verwalten von Google Cloud-Ressourcen mit Terraform-Konfigurationen, effektives Statusmanagement (lokal und remote) und die Modularisierung von Terraform-Code für Wiederverwendbarkeit und Organisation.
Complete the intermediate Manage Kubernetes in Google Cloud skill badge course to demonstrate skills in the following: managing deployments with kubectl, monitoring and debugging applications on Google Kubernetes Engine (GKE), and continuous delivery techniques.
Data Catalog is deprecated and will be discontinued on January 30, 2026. You can still complete this course if you want to. For steps to transition your Data Catalog users, workloads, and content to Dataplex Catalog, see Transition from Data Catalog to Dataplex Catalog (https://cloud.google.com/dataplex/docs/transition-to-dataplex-catalog). Data Catalog is a fully managed and scalable metadata management service that empowers organizations to quickly discover, understand, and manage all of their data. In this quest you will start small by learning how to search and tag data assets and metadata with Data Catalog. After learning how to build your own tag templates that map to BigQuery table data, you will learn how to build MySQL, PostgreSQL, and SQLServer to Data Catalog Connectors.
This course is part 1 of a 3-course series on Serverless Data Processing with Dataflow. In this first course, we start with a refresher of what Apache Beam is and its relationship with Dataflow. Next, we talk about the Apache Beam vision and the benefits of the Beam Portability framework. The Beam Portability framework achieves the vision that a developer can use their favorite programming language with their preferred execution backend. We then show you how Dataflow allows you to separate compute and storage while saving money, and how identity, access, and management tools interact with your Dataflow pipelines. Lastly, we look at how to implement the right security model for your use case on Dataflow.
In this course you will get hands-on in order to work through real-world challenges faced when building streaming data pipelines. The primary focus is on managing continuous, unbounded data with Google Cloud products.
While the traditional approaches of using data lakes and data warehouses can be effective, they have shortcomings, particularly in large enterprise environments. This course introduces the concept of a data lakehouse and the Google Cloud products used to create one. A lakehouse architecture uses open-standard data sources and combines the best features of data lakes and data warehouses, which addresses many of their shortcomings.