João Moreira
成为会员时间:2024
钻石联赛
36855 积分
成为会员时间:2024
本课程介绍 AI 隐私保护和安全方面的重要主题,还将探索使用 Google Cloud 产品和开源工具实施建议的 AI 隐私保护和安全实践的实用方法和工具。
本课程是 Google Cloud 数据分析认证计划的第二门课程(共五门)。在本课程中,您将探索数据的结构形式和组织方式。您将获得数据湖仓一体架构和云组件(如 BigQuery、Google Cloud Storage 和 DataProc)的实操经验,以便高效地存储、分析和处理大型数据集。
This is the third of five courses in the Google Cloud Data Analytics Certificate. In this course, you’ll begin by getting an overview of the data journey, from collection to insights. You’ll then learn how to use SQL to transform raw data into a usable format. Next, you’ll learn how to transform high volumes of data with a data pipeline. Finally, you’ll gain experience applying transformation strategies to real data sets to solve business needs.
本课程是 Google Cloud 数据分析认证计划的第四门课程(共五门课程)。在本课程中,您将重点学习在云端可视化数据的相关技能,其中数据可视化可分为五个关键阶段:讲故事、规划、探索数据、构建可视化图表以及与他人共享数据。您还将获得实操经验,尝试使用 UI(界面)/UX(用户体验)技能来制作线框图,从而设计出有影响力的云原生可视化图表,并使用云原生数据可视化工具来探索数据集、创建报告和构建信息中心,从而推动决策并促进协作。
本课程是 Google Cloud 数据分析认证计划的第五门课程(共五门)。在本课程中,你将综合运用前 4 门课程所学的基础知识和技能,实操完成一个结业项目,全面探索整个数据生命周期。您将练习使用云端工具来有效地获取、存储、处理、分析、直观呈现数据并传达数据分析洞见。课程结束时,您将完成一个项目,证明您在以下方面的熟练程度:高效地设计数据结构以整理来自多个来源的数据、向不同利益相关方展示解决方案,以及使用云端软件直观呈现数据分析洞见。您还将更新个人简历并练习面试技巧,为求职申请与面试环节做好准备。
完成 在 Vertex AI 中设计提示入门技能徽章课程,展示以下方面的技能: Vertex AI 中的提示工程、图片分析和多模态生成式技术。探索如何编写有效的提示,指导生成式 AI 输出, 以及将 Gemini 模型应用于真实的营销场景。
“生成式 AI 智能体:助力组织转型”是“Gen AI Leader”学习路线中的第五门课程,也是最后一门课程。本课程探讨了组织如何使用量身定制的生成式 AI 智能体,帮助应对特定的业务挑战。您将亲自动手构建一个基本的生成式 AI 智能体,并探索这些智能体的组成部分,例如模型、推理循环以及各种工具。
“生成式 AI 应用:改变工作方式”是 Generative AI Leader 学习路线的第四门课程。本课程介绍 Google 的生成式 AI 应用,例如 Gemini for Workspace 和 NotebookLM。它将引导您逐一了解接地、检索增强生成、构建有效提示和构建自动化工作流等概念。
“生成式 AI: 全面了解生成式 AI”是 Generative AI Leader 学习路线中的第三门课程。生成式 AI 正在改变我们的工作方式,以及我们与周围世界的互动方式。作为领导者,应该如何利用生成式 AI 来推动实现实际的业务成果?在本课程中,您将探索构建生成式 AI 解决方案的不同层级、Google Cloud 的产品,以及选择解决方案时需要考虑的因素。
“生成式 AI: 剖析基本概念”是 Generative AI Leader 学习路线中的第二门课程。在本课程中,您将了解生成式 AI 的基本概念。您要探索 AI、机器学习和生成式 AI 之间的区别,了解各种数据类型如何赋能生成式 AI,从而应对各种业务挑战。您还将深入了解 Google Cloud 应对基础模型局限性的策略,以及负责任和安全的 AI 开发与部署面临着哪些关键挑战。
“生成式 AI:不只是聊天机器人”是 Generative AI Leader 学习路线中的第一门课程。学习本课程没有知识门槛。本课程旨在帮助您超越对聊天机器人的基本认知,探索生成式 AI技术为您的组织带来的真正潜力。您将探索基础模型和提示工程等概念,这些知识对利用生成式 AI 的强大功能至关重要。本课程还将说明,为组织制定成功的生成式 AI 策略时,需要考虑哪些重要因素。
本课程回顾了 Model Armor 的基本安全功能,并让您能够使用该服务。您将了解与 LLM 相关的安全风险,以及 Model Armor 如何保护您的 AI 应用。
人工智能 (AI) 具备巨大的变革潜力,但也带来了新的安全挑战。本课程专为负责安全性和数据保护的领导者而设计,助其运用相关策略在组织内安全管理 AI。学习一个有助于实现以下目标的框架:主动识别并减轻 AI 特有的风险,保护敏感数据,确保遵从法规,构建弹性 AI 基础设施。通过四个不同行业的精选用例,探索这些策略如何应用于现实场景。
本课程介绍了 AI 可解释性和透明度的相关概念,探讨了 AI 透明度对于开发者和工程师的重要性。同时探索了有助于在数据和 AI 模型中实现可解释性和透明度的实用方法及工具。
本课程介绍了 Responsible AI 的概念和 AI 原则,还介绍了在 AI/机器学习实践中识别公平性与偏见以及减少偏见的实用技巧,同时探索了使用 Google Cloud 产品和开源工具来实施 Responsible AI 最佳实践的实用方法和工具。
随着企业对人工智能和机器学习的应用越来越广泛,以负责任的方式构建这些技术也变得更加重要。但对很多企业而言,真正践行 Responsible AI 并非易事。如果您有意了解如何在组织内践行 Responsible AI,本课程正适合您。 本课程将介绍 Google Cloud 目前如何践行 Responsible AI,以及从中总结的最佳实践和经验教训,便于您以此为框架构建自己的 Responsible AI 方法。
这是一节入门级微课程,旨在解释什么是负责任的 AI、它的重要性,以及 Google 如何在自己的产品中实现负责任的 AI。此外,本课程还介绍了 Google 的 7 个 AI 开发原则。
这是一节入门级微学习课程,探讨什么是大型语言模型 (LLM)、适合的应用场景以及如何使用提示调整来提升 LLM 性能,还介绍了可以帮助您开发自己的 Gen AI 应用的各种 Google 工具。
本课程能让机器学习从业者掌握评估生成式和预测式 AI 模型的基本工具、方法和最佳实践。要确保机器学习系统在实际运用中提供可靠、准确、高效的结果,做好模型评估至关重要。 学员将深入了解各项评估指标、方法及如何在不同模型类型和任务中适当应用这些指标和方法。课程将着重介绍生成式 AI 模型带来的独特挑战,并提供有效解决这些挑战的策略。通过利用 Google Cloud 的 Vertex AI Platform,学员可学习如何在模型选择、优化和持续监控工作中实施卓有成效的评估流程。
这是一节入门级微课程,旨在解释什么是生成式 AI、它的用途以及与传统机器学习方法的区别。该课程还介绍了可以帮助您开发自己的生成式 AI 应用的各种 Google 工具。
本课程致力于为您提供所需的知识和工具,让您能够了解 MLOps 团队在部署和管理生成式 AI 模型以及探索 Vertex AI 如何帮助 AI 团队简化 MLOps 流程时面临的独特挑战,并帮助您在生成式 AI 项目中取得成功。
本课程最适合担任技术或财务职务 且负责管理 Google Cloud 费用的人员。您将学习如何设置 结算账号、组织资源以及管理结算访问权限。 在实操实验中,您将学习如何查看账单、使用结算报告跟踪 Google Cloud 成本、使用 BigQuery 或 Google 表格分析结算数据, 以及使用 Looker Studio 创建自定义结算信息中心。视频中提及的链接 可以在此其他资源文档中查看。
完成入门级技能徽章课程“从 BigQuery 数据中挖掘数据洞见”,展示您在以下方面的技能: 编写 SQL 查询、查询公共表、将示例数据加载到 BigQuery 中、 在 BigQuery 中使用查询验证器排查常见的语法错误,以及通过连接到 BigQuery 数据在 Looker Studio 中 创建报告。
This course goes beyond the basics of Looker Studio to explore the powerful features and capabilities of Looker Studio Pro. Learn how to leverage team workspaces for efficient collaboration, enhance data security and administration, and utilize Google Cloud Customer Care for support. Discover premium features that elevate your data visualization and reporting capabilities. This course is designed for users who already have a foundational understanding of Looker Studio and want to unlock its full potential for their business or organization.
本课程是 Google Cloud 数据分析认证的第一门课程(共五门)。在本课程中,您将认识云数据分析领域,并了解云数据分析师在数据获取、存储、处理和可视化方面的角色和职责。您将探索 BigQuery 和 Cloud Storage 等基于 Google Cloud 的工具的架构,以及如何使用这些工具有效地设计数据结构,以及展示和报告数据。
完成 Looker 使用入门技能徽章课程,赢取技能徽章, 在这门课程中,您将学习如何使用 Looker Studio 和 Looker 分析、直观呈现和整理数据。
This is the fifth of five courses in the Google Cloud Data Analytics Certificate. In this course, you’ll combine and apply the foundational knowledge and skills from courses 1-4 in a hands-on Capstone project that focuses on the full data lifecycle project. You’ll practice using cloud-based tools to acquire, store, process, analyze, visualize, and communicate data insights effectively. By the end of the course, you’ll have completed a project demonstrating their proficiency in effectively structuring data from multiple sources, presenting solutions to varied stakeholders, and visualizing data insights using cloud-based software. You’ll also update your resume and practice interview techniques to help prepare for applying and interviewing for jobs.
This is the fourth of five courses in the Google Cloud Data Analytics Certificate. In this course, you’ll focus on developing skills in the five key stages of visualizing data in the cloud: storytelling, planning, exploring data, building visualizations, and sharing data with others. You’ll also gain experience using UI/UX skills to wireframe impactful, cloud-native visualizations and work with cloud-native data visualization tools to explore datasets, create reports, and build dashboards that drive decisions and foster collaboration.
This is the third of five courses in the Google Cloud Data Analytics Certificate. In this course, you’ll begin by getting an overview of the data journey, from collection to insights. You’ll then learn how to use SQL to transform raw data into a usable format. Next, you’ll learn how to transform high volumes of data with a data pipeline. Finally, you’ll gain experience applying transformation strategies to real data sets to solve business needs.
This is the second of five courses in the Google Cloud Data Analytics Certificate. In this course, you’ll explore how data is structured and organized. You’ll gain hands-on experience with the data lakehouse architecture and cloud components like BigQuery, Google Cloud Storage, and DataProc to efficiently store, analyze, and process large datasets.
This is the first of five courses in the Google Cloud Data Analytics Certificate. In this course, you’ll define the field of cloud data analysis and describe roles and responsibilities of a cloud data analyst as they relate to data acquisition, storage, processing, and visualization. You’ll explore the architecture of Google Cloud-based tools, like BigQuery and Cloud Storage, and how they are used to effectively structure, present, and report data.
完成入门级技能徽章课程在 Google Cloud 上为机器学习 API 准备数据,展示以下技能: 使用 Dataprep by Trifacta 清理数据、在 Dataflow 中运行数据流水线、在 Dataproc 中创建集群和运行 Apache Spark 作业,以及调用机器学习 API,包括 Cloud Natural Language API、Google Cloud Speech-to-Text API 和 Video Intelligence API。
完成构建安全的 Google Cloud 网络课程,赢取技能徽章。在此课程中,您将了解与网络有关的众多 资源,以便在 Google Cloud 上构建、扩缩和保护自己的应用。
完成“在 Google Cloud 上设置应用开发环境”课程,赢取技能徽章;通过该课程,您将了解如何使用以下技术的基本功能来构建和连接以存储为中心的云基础设施: Cloud Storage、Identity and Access Management、Cloud Functions 和 Pub/Sub。
Google Cloud 云计算基础课程面向没有或很少有云计算基础或经验的人群。本课程概述了云计算基础知识、大数据和机器学习的核心概念,以及 Google Cloud 在其中的定位与应用方式。 完成本系列课程后,学员将能够清晰阐述这些概念,并掌握一些实际操作技能。 课程应按以下顺序完成: 1. Google Cloud 云计算基础课程:云计算基础知识 2. Google Cloud 云计算基础课程:Google Cloud 中的基础设施 3. Google Cloud 云计算基础课程:Google Cloud 中的网络服务和安全性 4. Google Cloud 云计算基础课程:Google Cloud 中的数据、机器学习和 AI 本课程是该系列课程的最后一门,回顾了托管式大数据服务、机器学习及其价值,以及如何通过获得技能徽章来进一步展示您在 Google Cloud 方面的技能。
完成入门级技能徽章课程为 Compute Engine 实现云负载均衡,展示以下方面的技能: 在 Compute Engine 中创建和部署虚拟机 以及配置网络和应用负载均衡器。
Google Cloud 云计算基础课程面向几乎没有云计算背景或经验的人士。本课程概述了云计算基础知识、大数据和机器学习的核心概念,以及 Google Cloud 在其中的定位与应用方式。 完成本课程系列后,学员将能够阐述这些概念,并展示一定的实操技能。 课程应按以下顺序完成: 1. Google Cloud 云计算基础课程:云计算基础知识 2. Google Cloud 云计算基础课程:Google Cloud 中的基础设施 3. Google Cloud 云计算基础课程:Google Cloud 中的网络服务和安全性 4. Google Cloud 云计算基础课程:Google Cloud 中的数据、机器学习和 AI 本课是第三门课程,介绍云端自动化和管理工具以及如何构建安全网络。
Google Cloud 云计算基础课程面向云计算零基础或经验较少的人群。本课程概述了云计算基础知识、大数据和机器学习的核心概念,以及 Google Cloud 在其中的定位与应用方式。 完成本系列课程后,学员将能够清晰阐述这些概念,并掌握部分实操技能。 课程应按以下顺序完成: 1. Google Cloud 云计算基础课程:云计算基础知识 2. Google Cloud 云计算基础课程:Google Cloud 中的基础设施 3. Google Cloud 云计算基础课程:Google Cloud 中的网络服务和安全性 4. Google Cloud 云计算基础课程:Google Cloud 中的数据、机器学习和 AI
Google Cloud 云计算基础课程面向云计算零基础或经验较少的人群。本课程概述了云计算基础知识、大数据和机器学习的核心概念,以及 Google Cloud 在其中的定位与应用方式。 完成本系列课程后,学员将能够清晰阐述这些概念,并掌握部分实操技能。 课程应按以下顺序完成: 1. Google Cloud 云计算基础课程:云计算基础知识 2. Google Cloud 云计算基础课程:Google Cloud 中的基础设施 3. Google Cloud 云计算基础课程:Google Cloud 中的网络服务和安全性 4. Google Cloud 云计算基础课程:Google Cloud 中的数据、机器学习和 AI 本课是第一门课程,概述了云计算、Google Cloud 的使用方式以及各种计算选项。